Skip to main content

A pluggable & extensible trainer for pytorch

Project description

Torchero - A training framework for pytorch

GitHub Workflow Status codecov PyPI PyPI - Python Version license: MIT

Features

  • Train/validate models for given number of epochs
  • Hooks/Callbacks to add personalized behavior
  • Different metrics of model accuracy/error
  • Training/validation statistics monitors
  • Cross fold validation iterators for splitting validation data from train data

Installation

From PyPI

pip install torchero

From Source Code

git clone https://github.com/juancruzsosa/torchero
cd torchero
python setup.py install

Example

Training with MNIST

import torch
from torch import nn
from torch.utils.data import DataLoader
from torch import optim
import torchvision
from torchvision.datasets import MNIST
from torchvision import transforms
import torchero
from torchero import SupervisedTrainer
from torchero.meters import CategoricalAccuracy
from torchero.callbacks import ProgbarLogger as Logger, CSVLogger

class Network(nn.Module):
    def __init__(self):
        super(Network, self).__init__()
        self.filter = nn.Sequential(nn.Conv2d(in_channels=1, out_channels=32, kernel_size=5),
                                    nn.ReLU(inplace=True),
                                    nn.BatchNorm2d(32),
                                    nn.MaxPool2d(2),
                                    nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3),
                                    nn.ReLU(inplace=True),
                                    nn.BatchNorm2d(64),
                                    nn.MaxPool2d(2))
        self.linear = nn.Sequential(nn.Linear(5*5*64, 500),
                                    nn.BatchNorm1d(500),
                                    nn.ReLU(inplace=True),
                                    nn.Linear(500, 10))

    def forward(self, x):
        bs = x.shape[0]
        return self.linear(self.filter(x).view(bs, -1))

train_ds = MNIST(root='data/',
                 download=True,
                 train=True,
                 transform=transforms.Compose([transforms.ToTensor()]))
test_ds = MNIST(root='data/',
                download=False,
                train=False,
                transform=transforms.Compose([transforms.ToTensor()]))
train_dl = DataLoader(train_ds, batch_size=50)
test_dl = DataLoader(test_ds, batch_size=50)

model = Network()

trainer = SupervisedTrainer(model=model,
                            optimizer='sgd',
                            criterion='cross_entropy',
                            acc_meters={'acc': 'categorical_accuracy_percentage'},
                            callbacks=[Logger(),
                                       CSVLogger(output='training_stats.csv')
                                      ])

# If you want to use cuda uncomment the next line
# trainer.cuda()

trainer.train(dataloader=train_dl,
              valid_dataloader=test_dl,
              epochs=2)

Trainers

  • BatchTrainer: Abstract class for all trainers that works with batched inputs
  • SupervisedTrainer: Training for supervised tasks
  • AutoencoderTrainer: Trainer for auto encoder tasks

Callbacks

  • callbacks.Callback: Base callback class for all epoch/training events
  • callbacks.History: Callback that record history of all training/validation metrics
  • callbacks.Logger: Callback that display metrics per logging step
  • callbacks.ProgbarLogger: Callback that displays progress bars to monitor training/validation metrics
  • callbacks.CallbackContainer: Callback to group multiple hooks
  • callbacks.ModelCheckpoint: Callback to save best model after every epoch
  • callbacks.EarlyStopping: Callback to stop training when monitored quanity not improves
  • callbacks.CSVLogger: Callback that export training/validation stadistics to a csv file

Meters

  • meters.BaseMeter: Interface for all meters
  • meters.BatchMeters: Superclass of meters that works with batchs
  • meters.CategoricalAccuracy: Meter for accuracy on categorical targets
  • meters.BinaryAccuracy: Meter for accuracy on binary targets (assuming normalized inputs)
  • meters.BinaryAccuracyWithLogits: Binary accuracy meter with an integrated activation function (by default logistic function)
  • meters.ConfusionMatrix: Meter for confusion matrix.
  • meters.MSE: Mean Squared Error meter
  • meters.MSLE: Mean Squared Log Error meter
  • meters.RMSE: Rooted Mean Squared Error meter
  • meters.RMSLE: Rooted Mean Squared Log Error meter
  • meters.Precision: Precision meter
  • meters.Recall: Precision meter
  • meters.Specificity: Precision meter
  • meters.NPV: Negative predictive value meter
  • meters.F1Score: F1 Score meter
  • meters.F2Score: F2 Score meter

Cross validation

  • utils.data.CrossFoldValidation: Itererator through cross-fold-validation folds
  • utils.data.train_test_split: Split dataset into train and test datasets

Datasets

  • utils.data.datasets.SubsetDataset: Dataset that is a subset of the original dataset
  • utils.data.datasets.ShrinkDatset: Shrinks a dataset
  • utils.data.datasets.UnsuperviseDataset: Makes a dataset unsupervised

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchero-0.0.6.tar.gz (40.9 kB view details)

Uploaded Source

Built Distribution

torchero-0.0.6-py3-none-any.whl (55.9 kB view details)

Uploaded Python 3

File details

Details for the file torchero-0.0.6.tar.gz.

File metadata

  • Download URL: torchero-0.0.6.tar.gz
  • Upload date:
  • Size: 40.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for torchero-0.0.6.tar.gz
Algorithm Hash digest
SHA256 f5482f6d2c8c72b302f918c7d38d6df32e30137caff725a6146532cdc487167e
MD5 def34224a874fa67cc09d66acffcf52b
BLAKE2b-256 24d0c06be30d6d4d5a676ff1444764f71d0d84a784808d487cc5f71aad716a84

See more details on using hashes here.

File details

Details for the file torchero-0.0.6-py3-none-any.whl.

File metadata

  • Download URL: torchero-0.0.6-py3-none-any.whl
  • Upload date:
  • Size: 55.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for torchero-0.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 0f4d47fe591b3f89b118cdc1c49857ed623e835721c4951b569ce1ed61f5c9ea
MD5 9469a430d4ec156a4550587dfa066ac4
BLAKE2b-256 98bdc38ea58d5f77d5d79dc1f634ebf623216f1f4e587fe0cde62c84c84cc83c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page