Skip to main content
Help the Python Software Foundation raise $60,000 USD by December 31st!  Building the PSF Q4 Fundraiser

PyTorch Implementation of Fully Convolutional Networks.

Project description

# pytorch-fcn


Fully Convolutional Networks implemented with PyTorch.


## TODO

- Support FCN16s and FCN8s.


## Accuracy

**FCN32s**

- `deconv=False`
- `train=SBDClassSeg(split='train')`
- `val=VOC2011(split='seg11val')`
- `batch_size=1`
- `MomentumSGD(lr=1e-10, momentum=0.99, weight_decay=0.0005)`

| epoch | iteration | valid/loss | valid/acc | valid/acc_cls | valid/mean_iu | valid/fwavacc |
|--------:|------------:|-------------:|------------:|----------------:|----------------:|----------------:|
| 9 | 76482 | 59656.847812 | 0.897753 | 0.780288 | 0.628707 | 0.844420 |

<img src="_static/fcn32s_voc2012_best_epoch9.jpg" width="40%" />
<img src="_static/fcn32s_voc2012_visualization_val.gif" width="40%" />


## Speed

It is ~4 times faster than [FCN implemented with Chainer](https://github.com/wkentaro/fcn),
measuring on Titan X Pascal.

```bash
% ./speedtest.py --gpu 0 --times 1000
==> Running on GPU: 0 to evaluate 1000 times
==> Testing FCN32s with Chainer
Elapsed time: 208.34 [s / 1000 evals]
Hz: 4.80 [hz]
==> Testing FCN32s with PyTorch
Elapsed time: 56.30 [s / 1000 evals]
Hz: 17.76 [hz]
```

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for torchfcn, version 1.0
Filename, size File type Python version Upload date Hashes
Filename, size torchfcn-1.0.tar.gz (8.6 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page