Skip to main content

PyTorch functions to improve performance, analyse models and make your life easier.

Project description

torchfunc Logo


Version Docs Tests Coverage Style PyPI Python PyTorch Docker Roadmap
Version Documentation Tests codebeat PyPI Python PyTorch Docker Roadmap

torchfunc is library revolving around PyTorch with a goal to help you with:

  • Improving and analysing performance of your neural network
  • Daily neural network duties (model size, seeding, performance measurements etc.)
  • Plotting and visualizing modules
  • Record neuron activity and tailor it to your specific task or target
  • Get information about your host operating system, CUDA devices and others

Quick examples

  • Seed globaly, Freeze weights, check inference time and model size
# Inb4 MNIST, you can use any module with those functions
model = torch.nn.Linear(784, 10)
frozen = torchfunc.module.freeze(model, bias=False)

with torchfunc.Timer() as timer:
  frozen(torch.randn(32, 784)
  print(timer.checkpoint()) # Time since the beginning
  frozen(torch.randn(128, 784)
  print(timer.checkpoint()) # Since last checkpoint

print(f"Overall time {timer}; Model size: {torchfunc.sizeof(frozen)}")
  • Recorder and sum per-layer activation statistics as data passes through network:
# MNIST classifier
model = torch.nn.Sequential(
    torch.nn.Linear(784, 100),
    torch.nn.ReLU(),
    torch.nn.Linear(100, 50),
    torch.nn.ReLU(),
    torch.nn.Linear(50, 10),
)
# Recorder which sums layer inputs from consecutive forward calls
recorder = torchfunc.record.ForwardPreRecorder(reduction=lambda x, y: x+y)
# Record inputs going into Linear(100, 50) and Linear(50, 10)
recorder.children(model, indices=(2, 3))
# Train your network normally (or pass data through it)
...
# Save tensors (of shape 100 and 50) in folder, each named 1.pt and 2.pt respectively
recorder.save(pathlib.Path("./analysis"))

For performance tips, plotting and other check torchfunc documentation.

Installation

pip

Latest release:

pip install --user torchfunc

Nightly:

pip install --user torchfunc-nightly

Docker

CPU standalone and various versions of GPU enabled images are available at dockerhub.

For CPU quickstart, issue:

docker pull szymonmaszke/torchfunc:18.04

Nightly builds are also available, just prefix tag with nightly_. If you are going for GPU image make sure you have nvidia/docker installed and it's runtime set.

Contributing

If you find any issue or you think some functionality may be useful to others and fits this library, please open new Issue or create Pull Request.

To get an overview of something which one can done to help this project, see Roadmap

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchfunc-nightly-1569481355.tar.gz (19.8 kB view details)

Uploaded Source

Built Distribution

torchfunc_nightly-1569481355-py3-none-any.whl (25.0 kB view details)

Uploaded Python 3

File details

Details for the file torchfunc-nightly-1569481355.tar.gz.

File metadata

  • Download URL: torchfunc-nightly-1569481355.tar.gz
  • Upload date:
  • Size: 19.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for torchfunc-nightly-1569481355.tar.gz
Algorithm Hash digest
SHA256 f70acf452285078b6e87519db1744d91acc026ed93b2460718795298d057633b
MD5 1ea1d93b472deef476f997cb6d9ce043
BLAKE2b-256 84b92357664474d75cd2b9e7a67081ecfdacf0f2b0afdf1fd7ae7bc2b1459d67

See more details on using hashes here.

File details

Details for the file torchfunc_nightly-1569481355-py3-none-any.whl.

File metadata

  • Download URL: torchfunc_nightly-1569481355-py3-none-any.whl
  • Upload date:
  • Size: 25.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for torchfunc_nightly-1569481355-py3-none-any.whl
Algorithm Hash digest
SHA256 e35c2d30c0ffd94e3bd3f2f6d7052b7d6f14ae865c3ef9d4b24b4d9bd5ad16e9
MD5 e04573416bde0c6fcf86e93be973123a
BLAKE2b-256 48fc993a64ce931a225f607fa5ea2813ded508561feea412438cbbda06296460

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page