Skip to main content

No project description provided

Project description

torchility

A Pytorch-lightning based tool for training pytorch deep learning model more simply.

Install

  • pip install torchility

Dependency

  • pytorch>=2.0
  • pytorch-lightning>=2.0,<2.1
  • torchmetrics>=0.11,<0.12
  • matplotlib>=3.3
  • pyyaml>=5.4
  • tensorboardX>=2.6

Usage

Example

  • MNIST
from torchility import Trainer
import torch
from torch import nn
from torch.nn import functional as F
from torchvision.datasets import MNIST
from torchvision import transforms
from torch.utils.data import DataLoader, random_split
import warnings
warnings.simplefilter("ignore")  # ignore annoying warnings

# datasets
data_dir = './datasets'
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
mnist_full = MNIST(data_dir, train=True, transform=transform, download=True)
train_ds, val_ds = random_split(mnist_full, [55000, 5000])
test_ds = MNIST(data_dir, train=False, transform=transform, download=True)

# dataloaders
train_dl = DataLoader(train_ds, batch_size=32)
val_dl = DataLoader(val_ds, batch_size=32)
test_dl = DataLoader(test_ds, batch_size=32)

# pytorch model
channels, width, height = (1, 28, 28)
model = nn.Sequential(
    nn.Flatten(),
    nn.Linear(channels * width * height, 64),
    nn.ReLU(),
    nn.Dropout(0.1),
    nn.Linear(64, 64),
    nn.ReLU(),
    nn.Dropout(0.1),
    nn.Linear(64, 10)
)

# optimizer
opt = torch.optim.Adam(model.parameters(), lr=2e-4)
# trainer
trainer = Trainer(model, F.cross_entropy, opt, epochs=2)
# train and validate
trainer.fit(train_dl, val_dl)
# test
trainer.test(test_dl)
  • See the examples for more examples

Data Flow

https://github.com/hitlic/torchility

Project details


Release history Release notifications | RSS feed

This version

0.9

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchility-0.9.tar.gz (23.7 kB view details)

Uploaded Source

Built Distribution

torchility-0.9-py3-none-any.whl (28.1 kB view details)

Uploaded Python 3

File details

Details for the file torchility-0.9.tar.gz.

File metadata

  • Download URL: torchility-0.9.tar.gz
  • Upload date:
  • Size: 23.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for torchility-0.9.tar.gz
Algorithm Hash digest
SHA256 033b36b5f3f417017748cf5daec02b5867ff63979a8d40c34240243a4f85b097
MD5 b5333893f3f708f74a2127e1fb23cc36
BLAKE2b-256 28ba79480521e63d5865dc164c1c3d47489a40f8c67a6c40ec26e22ba60cccab

See more details on using hashes here.

File details

Details for the file torchility-0.9-py3-none-any.whl.

File metadata

  • Download URL: torchility-0.9-py3-none-any.whl
  • Upload date:
  • Size: 28.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for torchility-0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 8e121e57114ba432d69ca82d190dd926fe22bd0d3796f9af476cf8ac2a7ce149
MD5 43675649e1d977b9e4f4aff264172123
BLAKE2b-256 98ac915f036c8d7dd95d3274b5bbc28511b49fa42982985f9eb3f37a75b73532

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page