No project description provided
Project description
torchility
A Pytorch-lightning based tool for training pytorch deep learning model more simply.
Install
pip install torchility
Dependency
- pytorch>=2.0
- pytorch-lightning>=2.0,<2.1
- torchmetrics>=0.11,<0.12
- matplotlib>=3.3
- pyyaml>=5.4
- tensorboardX>=2.6
Usage
Example
- MNIST
from torchility import Trainer
import torch
from torch import nn
from torch.nn import functional as F
from torchvision.datasets import MNIST
from torchvision import transforms
from torch.utils.data import DataLoader, random_split
import warnings
warnings.simplefilter("ignore") # ignore annoying warnings
# datasets
data_dir = './datasets'
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
mnist_full = MNIST(data_dir, train=True, transform=transform, download=True)
train_ds, val_ds = random_split(mnist_full, [55000, 5000])
test_ds = MNIST(data_dir, train=False, transform=transform, download=True)
# dataloaders
train_dl = DataLoader(train_ds, batch_size=32)
val_dl = DataLoader(val_ds, batch_size=32)
test_dl = DataLoader(test_ds, batch_size=32)
# pytorch model
channels, width, height = (1, 28, 28)
model = nn.Sequential(
nn.Flatten(),
nn.Linear(channels * width * height, 64),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(64, 64),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(64, 10)
)
# optimizer
opt = torch.optim.Adam(model.parameters(), lr=2e-4)
# trainer
trainer = Trainer(model, F.cross_entropy, opt, epochs=2)
# train and validate
trainer.fit(train_dl, val_dl)
# test
trainer.test(test_dl)
- See the
examples
for more examples
Data Flow
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
torchility-0.9.tar.gz
(23.7 kB
view details)
Built Distribution
torchility-0.9-py3-none-any.whl
(28.1 kB
view details)
File details
Details for the file torchility-0.9.tar.gz
.
File metadata
- Download URL: torchility-0.9.tar.gz
- Upload date:
- Size: 23.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 033b36b5f3f417017748cf5daec02b5867ff63979a8d40c34240243a4f85b097 |
|
MD5 | b5333893f3f708f74a2127e1fb23cc36 |
|
BLAKE2b-256 | 28ba79480521e63d5865dc164c1c3d47489a40f8c67a6c40ec26e22ba60cccab |
File details
Details for the file torchility-0.9-py3-none-any.whl
.
File metadata
- Download URL: torchility-0.9-py3-none-any.whl
- Upload date:
- Size: 28.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8e121e57114ba432d69ca82d190dd926fe22bd0d3796f9af476cf8ac2a7ce149 |
|
MD5 | 43675649e1d977b9e4f4aff264172123 |
|
BLAKE2b-256 | 98ac915f036c8d7dd95d3274b5bbc28511b49fa42982985f9eb3f37a75b73532 |