Skip to main content

pytorch❤️ keras

Project description

1,Introduction

The torchkeras library is a simple tool for training neural network in pytorch jusk like in a keras style. 😋😋

With torchkeras, You need not to write your training loop with many lines of code, all you need to do is just

like this three steps as below:

(i) create your network and wrap it with torchkeras.Model like this: model = torchkeras.Model(net)

(ii) compile your model to bind the loss function, the optimizer and the metrics function.

(iii) fit your model with the training data and validate data.

This project seems somehow powerful, but the source code is very simple.

Actually, less than 200 lines of Python code.

If you want to understand or modify some details of this project, feel free to read and change the source code!!!


🍉🍉 new feature🍉🍉: torchkeras.LightModel 😋😋

it's more powerful than torchkeras.Model and with more flexibility and easier to use!

the tutorial of torchkeras.LightModel is here:

Use Pytorch-Lightning Like Keras


2, Use example

You can install torchkeras using pip: pip install torchkeras

Here is a complete examples using torchkeras!

import numpy as np 
import pandas as pd 
from matplotlib import pyplot as plt
import torch
from torch import nn
import torch.nn.functional as F
from torch.utils.data import Dataset,DataLoader,TensorDataset

import torchkeras #Attention this line 

(1) prepare data

%matplotlib inline
%config InlineBackend.figure_format = 'svg'

#number of samples
n_positive,n_negative = 2000,2000

#positive samples
r_p = 5.0 + torch.normal(0.0,1.0,size = [n_positive,1]) 
theta_p = 2*np.pi*torch.rand([n_positive,1])
Xp = torch.cat([r_p*torch.cos(theta_p),r_p*torch.sin(theta_p)],axis = 1)
Yp = torch.ones_like(r_p)

#negative samples
r_n = 8.0 + torch.normal(0.0,1.0,size = [n_negative,1]) 
theta_n = 2*np.pi*torch.rand([n_negative,1])
Xn = torch.cat([r_n*torch.cos(theta_n),r_n*torch.sin(theta_n)],axis = 1)
Yn = torch.zeros_like(r_n)

#concat positive and negative samples
X = torch.cat([Xp,Xn],axis = 0)
Y = torch.cat([Yp,Yn],axis = 0)


#visual samples
plt.figure(figsize = (6,6))
plt.scatter(Xp[:,0],Xp[:,1],c = "r")
plt.scatter(Xn[:,0],Xn[:,1],c = "g")
plt.legend(["positive","negative"]);

# split samples into train and valid data.
ds = TensorDataset(X,Y)
ds_train,ds_valid = torch.utils.data.random_split(ds,[int(len(ds)*0.7),len(ds)-int(len(ds)*0.7)])
dl_train = DataLoader(ds_train,batch_size = 100,shuffle=True,num_workers=2)
dl_valid = DataLoader(ds_valid,batch_size = 100,num_workers=2)

(2) create the model

class Net(nn.Module):  
    def __init__(self):
        super().__init__()
        self.fc1 = nn.Linear(2,4)
        self.fc2 = nn.Linear(4,8) 
        self.fc3 = nn.Linear(8,1)

    def forward(self,x):
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        y = nn.Sigmoid()(self.fc3(x))
        return y

net = Net()

### Attention here
model = torchkeras.Model(net)
model.summary(input_shape =(2,))
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Linear-1                    [-1, 4]              12
            Linear-2                    [-1, 8]              40
            Linear-3                    [-1, 1]               9
================================================================
Total params: 61
Trainable params: 61
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.000008
Forward/backward pass size (MB): 0.000099
Params size (MB): 0.000233
Estimated Total Size (MB): 0.000340
----------------------------------------------------------------

(3) train the model

# define metric
def accuracy(y_pred,y_true):
    y_pred = torch.where(y_pred>0.5,torch.ones_like(y_pred,dtype = torch.float32),
                      torch.zeros_like(y_pred,dtype = torch.float32))
    acc = torch.mean(1-torch.abs(y_true-y_pred))
    return acc

# if gpu is available, use gpu
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

model.compile(loss_func = nn.BCELoss(),optimizer= torch.optim.Adam(model.parameters(),lr = 0.01),
             metrics_dict={"accuracy":accuracy},device = device)

dfhistory = model.fit(30,dl_train = dl_train,dl_val = dl_valid,log_step_freq = 20)
Start Training ...

================================================================================2020-06-21 20:40:23
{'step': 10, 'loss': 0.217, 'accuracy': 0.905}
{'step': 20, 'loss': 0.215, 'accuracy': 0.914}

 +-------+-------+----------+----------+--------------+
| epoch |  loss | accuracy | val_loss | val_accuracy |
+-------+-------+----------+----------+--------------+
|   1   | 0.212 |  0.914   |  0.186   |    0.927     |
+-------+-------+----------+----------+--------------+

================================================================================2020-06-21 20:40:23
{'step': 10, 'loss': 0.211, 'accuracy': 0.912}
{'step': 20, 'loss': 0.193, 'accuracy': 0.919}

 +-------+-------+----------+----------+--------------+
| epoch |  loss | accuracy | val_loss | val_accuracy |
+-------+-------+----------+----------+--------------+
|   2   | 0.194 |  0.919   |  0.188   |    0.935     |
+-------+-------+----------+----------+--------------+

================================================================================2020-06-21 20:40:23
{'step': 10, 'loss': 0.217, 'accuracy': 0.913}
{'step': 20, 'loss': 0.205, 'accuracy': 0.92}

 +-------+-------+----------+----------+--------------+
| epoch |  loss | accuracy | val_loss | val_accuracy |
+-------+-------+----------+----------+--------------+
|   3   | 0.195 |  0.921   |  0.176   |    0.931     |
+-------+-------+----------+----------+--------------+

================================================================================2020-06-21 20:40:23
{'step': 10, 'loss': 0.164, 'accuracy': 0.932}
{'step': 20, 'loss': 0.197, 'accuracy': 0.917}

 +-------+-------+----------+----------+--------------+
| epoch |  loss | accuracy | val_loss | val_accuracy |
+-------+-------+----------+----------+--------------+
|   4   | 0.197 |  0.917   |  0.178   |    0.935     |
+-------+-------+----------+----------+--------------+

================================================================================2020-06-21 20:40:24
{'step': 10, 'loss': 0.192, 'accuracy': 0.926}
{'step': 20, 'loss': 0.182, 'accuracy': 0.931}

 +-------+-------+----------+----------+--------------+
| epoch |  loss | accuracy | val_loss | val_accuracy |
+-------+-------+----------+----------+--------------+
|   5   | 0.193 |  0.924   |  0.188   |    0.928     |
+-------+-------+----------+----------+--------------+

================================================================================2020-06-21 20:40:44
{'step': 10, 'loss': 0.175, 'accuracy': 0.932}
{'step': 20, 'loss': 0.188, 'accuracy': 0.924}

 +-------+-------+----------+----------+--------------+
| epoch |  loss | accuracy | val_loss | val_accuracy |
+-------+-------+----------+----------+--------------+
|   97  | 0.184 |  0.923   |  0.176   |    0.935     |
+-------+-------+----------+----------+--------------+

================================================================================2020-06-21 20:40:44
{'step': 10, 'loss': 0.21, 'accuracy': 0.913}
{'step': 20, 'loss': 0.192, 'accuracy': 0.918}

 +-------+------+----------+----------+--------------+
| epoch | loss | accuracy | val_loss | val_accuracy |
+-------+------+----------+----------+--------------+
|   98  | 0.19 |  0.922   |  0.179   |    0.934     |
+-------+------+----------+----------+--------------+

================================================================================2020-06-21 20:40:45
{'step': 10, 'loss': 0.186, 'accuracy': 0.923}
{'step': 20, 'loss': 0.181, 'accuracy': 0.928}

 +-------+-------+----------+----------+--------------+
| epoch |  loss | accuracy | val_loss | val_accuracy |
+-------+-------+----------+----------+--------------+
|   99  | 0.182 |  0.926   |  0.178   |    0.938     |
+-------+-------+----------+----------+--------------+

================================================================================2020-06-21 20:40:45
{'step': 10, 'loss': 0.16, 'accuracy': 0.93}
{'step': 20, 'loss': 0.173, 'accuracy': 0.93}

 +-------+-------+----------+----------+--------------+
| epoch |  loss | accuracy | val_loss | val_accuracy |
+-------+-------+----------+----------+--------------+
|  100  | 0.185 |  0.925   |  0.174   |    0.936     |
+-------+-------+----------+----------+--------------+

================================================================================2020-06-21 20:40:45
Finished Training...
# visual the results
fig, (ax1,ax2) = plt.subplots(nrows=1,ncols=2,figsize = (12,5))
ax1.scatter(Xp[:,0],Xp[:,1], c="r")
ax1.scatter(Xn[:,0],Xn[:,1],c = "g")
ax1.legend(["positive","negative"]);
ax1.set_title("y_true")

Xp_pred = X[torch.squeeze(model.forward(X)>=0.5)]
Xn_pred = X[torch.squeeze(model.forward(X)<0.5)]

ax2.scatter(Xp_pred[:,0],Xp_pred[:,1],c = "r")
ax2.scatter(Xn_pred[:,0],Xn_pred[:,1],c = "g")
ax2.legend(["positive","negative"]);
ax2.set_title("y_pred")

(4) evaluate the model


%matplotlib inline
%config InlineBackend.figure_format = 'svg'

import matplotlib.pyplot as plt

def plot_metric(dfhistory, metric):
    train_metrics = dfhistory[metric]
    val_metrics = dfhistory['val_'+metric]
    epochs = range(1, len(train_metrics) + 1)
    plt.plot(epochs, train_metrics, 'bo--')
    plt.plot(epochs, val_metrics, 'ro-')
    plt.title('Training and validation '+ metric)
    plt.xlabel("Epochs")
    plt.ylabel(metric)
    plt.legend(["train_"+metric, 'val_'+metric])
    plt.show()
plot_metric(dfhistory,"loss")

plot_metric(dfhistory,"accuracy")


model.evaluate(dl_valid)
{'val_loss': 0.13576620258390903, 'val_accuracy': 0.9441666702429453}

(5) use the model

model.predict(dl_valid)[0:10]
tensor([[0.8767],
        [0.0154],
        [0.9976],
        [0.9990],
        [0.9984],
        [0.0071],
        [0.3529],
        [0.4061],
        [0.9938],
        [0.9997]])
for features,labels in dl_valid:
    with torch.no_grad():
        predictions = model.forward(features)
        print(predictions[0:10])
    break
tensor([[0.9979],
        [0.0011],
        [0.9782],
        [0.9675],
        [0.9653],
        [0.9906],
        [0.1774],
        [0.9994],
        [0.9178],
        [0.9579]])

(6) save the model

# save the model parameters

torch.save(model.state_dict(), "model_parameter.pkl")

model_clone = torchkeras.Model(Net())
model_clone.load_state_dict(torch.load("model_parameter.pkl"))

model_clone.compile(loss_func = nn.BCELoss(),optimizer= torch.optim.Adam(model.parameters(),lr = 0.01),
             metrics_dict={"accuracy":accuracy})

model_clone.evaluate(dl_valid)
{'val_loss': 0.17422042911251387, 'val_accuracy': 0.9358333299557368}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchkeras-2.1.1.tar.gz (11.0 kB view details)

Uploaded Source

Built Distribution

torchkeras-2.1.1-py3-none-any.whl (13.0 kB view details)

Uploaded Python 3

File details

Details for the file torchkeras-2.1.1.tar.gz.

File metadata

  • Download URL: torchkeras-2.1.1.tar.gz
  • Upload date:
  • Size: 11.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.7.3

File hashes

Hashes for torchkeras-2.1.1.tar.gz
Algorithm Hash digest
SHA256 4ff9a5a201d5b0f61401073d5b09550a03cd07ebfe9fa1b2554578bd8726bce1
MD5 4e35ef68022af9e705b15575a004bfe2
BLAKE2b-256 8358360542f9589f35fb429564488b9bedc83b91934ab2483738565bec441fbe

See more details on using hashes here.

File details

Details for the file torchkeras-2.1.1-py3-none-any.whl.

File metadata

  • Download URL: torchkeras-2.1.1-py3-none-any.whl
  • Upload date:
  • Size: 13.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.7.3

File hashes

Hashes for torchkeras-2.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 895f899d3af54fa2bd368fb17d80e25f3ffcabd2f2c56ee7b3c49b816359c82a
MD5 f9116cba0b0f1eaebd638256c0ac5418
BLAKE2b-256 c6835d039e1f7a3145816d27c7f6ca627bc77e442eb70cdacff155fafae41634

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page