Skip to main content

A lightweight training tool for pytorch projects.

Project description

TorchLiter

test License: MIT PyPI version

A freely customizable and truly lightweight training tool for any pytorch projects

Install

pip install torchliter

Example Usage:

import torchliter as lux
import torch
import torch.nn as nn
import torch.nn.functional as F


cart = lux.Cart()
cart.model = nn.Linear(1, 3)
cart.train_loader = torch.utils.data.DataLoader(
    [i for i in range(100)], batch_size=5
)
cart.eval_loader = torch.utils.data.DataLoader(
    [i for i in range(100)], batch_size=5
)
cart.optimizer = torch.optim.AdamW(
    cart.model.parameters(), lr=1e-3, weight_decay=1e-5
)

def train_step(_, batch, **kwargs):
    image, target = batch
    logits = _.model(image)
    loss = F.cross_entropy(logits, target)
    _.optimizer.zero_grad()
    loss.backward()
    _.optimizer.step()

    yield "cross entropy loss", loss.item()

    acc = (logits.max(-1).indices == target).float().mean()

    yield "train acc", acc.item()

def eval_step(_, batch, **kwargs):
    image, target = batch
    with torch.no_grad():
        logits = _.model(image)
    acc = (logits.max(-1).indices == target).float().mean()
    yield "eval acc", acc.item()

def hello(_):
    print("hello")

train_buffers = lux.engine.AutoEngine.auto_buffers(
    train_step, lux.buffers.ExponentialMovingAverage
)
eval_buffers = lux.engine.AutoEngine.auto_buffers(
    eval_step, lux.buffers.ScalarSummaryStatistics
)
TestEngineClass = lux.engine.AutoEngine.build(
    "TestEngine", train_step, eval_step, print_hello=hello
)
test_engine = TestEngineClass(**{**cart.kwargs, **train_buffers, **eval_buffers})

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchliter-0.3.2.tar.gz (16.4 kB view details)

Uploaded Source

Built Distribution

torchliter-0.3.2-py3-none-any.whl (20.3 kB view details)

Uploaded Python 3

File details

Details for the file torchliter-0.3.2.tar.gz.

File metadata

  • Download URL: torchliter-0.3.2.tar.gz
  • Upload date:
  • Size: 16.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for torchliter-0.3.2.tar.gz
Algorithm Hash digest
SHA256 9a03f6949e8cab0a827f05c0bf3cabbabc7d6eb3eb9a586d9ff1e5835d2edcda
MD5 340afa76e0761aa1a4bf71f73f091e9c
BLAKE2b-256 7e01aa9e4be3d6ad3aa6c54d97a438139d57c55945bccd34ea52137ada25a56e

See more details on using hashes here.

File details

Details for the file torchliter-0.3.2-py3-none-any.whl.

File metadata

  • Download URL: torchliter-0.3.2-py3-none-any.whl
  • Upload date:
  • Size: 20.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for torchliter-0.3.2-py3-none-any.whl
Algorithm Hash digest
SHA256 fa1834ad37b8a2907271b360a1a2f5b3f2e165bbddbed4c847bcb24ab05dcf99
MD5 e7089876d2a5e7d6dcea84587d7e14f0
BLAKE2b-256 79ea60af8f90962e5dcfdfc911413f7dd85c94a11094d9eb8157b716e86d1095

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page