A lightweight training tool for pytorch projects.
Project description
TorchLiter
A freely customizable and truly lightweight training tool for any pytorch projects
Install
pip install torchliter
Example Usage:
import torchliter as lux
import torch
import torch.nn as nn
import torch.nn.functional as F
cart = lux.Cart()
cart.model = nn.Linear(1, 3)
cart.train_loader = torch.utils.data.DataLoader(
[i for i in range(100)], batch_size=5
)
cart.eval_loader = torch.utils.data.DataLoader(
[i for i in range(100)], batch_size=5
)
cart.optimizer = torch.optim.AdamW(
cart.model.parameters(), lr=1e-3, weight_decay=1e-5
)
def train_step(_, batch, **kwargs):
image, target = batch
logits = _.model(image)
loss = F.cross_entropy(logits, target)
_.optimizer.zero_grad()
loss.backward()
_.optimizer.step()
yield "cross entropy loss", loss.item()
acc = (logits.max(-1).indices == target).float().mean()
yield "train acc", acc.item()
def eval_step(_, batch, **kwargs):
image, target = batch
with torch.no_grad():
logits = _.model(image)
acc = (logits.max(-1).indices == target).float().mean()
yield "eval acc", acc.item()
def hello(_):
print("hello")
train_buffers = lux.engine.AutoEngine.auto_buffers(
train_step, lux.buffers.ExponentialMovingAverage
)
eval_buffers = lux.engine.AutoEngine.auto_buffers(
eval_step, lux.buffers.ScalarSummaryStatistics
)
TestEngineClass = lux.engine.AutoEngine.build(
"TestEngine", train_step, eval_step, print_hello=hello
)
test_engine = TestEngineClass(**{**cart.kwargs, **train_buffers, **eval_buffers})
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
torchliter-0.3.3.tar.gz
(16.5 kB
view details)
Built Distribution
File details
Details for the file torchliter-0.3.3.tar.gz
.
File metadata
- Download URL: torchliter-0.3.3.tar.gz
- Upload date:
- Size: 16.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d1456b6dc5cf2cf061914b5c0ef15a81d7dbd0bd9b56a06c9486afab4864590b |
|
MD5 | 12e7052da5cbcaa9dccd69fa07deb564 |
|
BLAKE2b-256 | 03ee024a0beb6e2085ee98c27f84d286d01660edcd80c082175b2efdeb20fd5b |
File details
Details for the file torchliter-0.3.3-py3-none-any.whl
.
File metadata
- Download URL: torchliter-0.3.3-py3-none-any.whl
- Upload date:
- Size: 20.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c8422e274eb9f19a34287b3f6e458ebb0d5c7554dcddb4287300f0868ab3b215 |
|
MD5 | c3f2557878e3d4389241a818e647cc88 |
|
BLAKE2b-256 | 79a2cfcb12f83a588b2c5245badb6ac6a193ea15b57431cb1717677bfb4459c7 |