No project description provided
Project description
Torch Lure
Depndencies
pip install git+https://github.com/Farama-Foundation/Minari.git@19565bd8cd33f2e4a3a9a8e4db372044b01ea8d3
pip install torch-lure
Usage
import torchlure as lure
# Optimizers
lure.SophiaG(lr=1e-3, weight_decay=0.2)
# Functions
lure.tanh_exp(x)
lure.TanhExp()
lure.quantile_loss(y_pred, y_target, quantile=0.5)
lure.QuantileLoss(quantile=0.5)
lure.RMSNrom(dim=256, eps=1e-6)
# Noise Scheduler
lure.LinearNoiseScheduler(beta=1e-4, beta_end=0.02, num_timesteps=1000)
lure.CosineNoiseScheduler(max_beta=0.999, s=0.008, num_timesteps=1000):
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
torchlure-0.2405.1.tar.gz
(9.5 kB
view details)
Built Distribution
File details
Details for the file torchlure-0.2405.1.tar.gz
.
File metadata
- Download URL: torchlure-0.2405.1.tar.gz
- Upload date:
- Size: 9.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.12.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | efcc32dff4a200bdbcf04f540f721d7588cb4a08382121cbb7ee7d4a613ce42f |
|
MD5 | 70d5f2fee896c0bf0b70de6b025a6811 |
|
BLAKE2b-256 | a432d4571bc6c5c5c64d2741506f84d85eab16f24693a54d459e644fb5b6efa0 |
File details
Details for the file torchlure-0.2405.1-py3-none-any.whl
.
File metadata
- Download URL: torchlure-0.2405.1-py3-none-any.whl
- Upload date:
- Size: 9.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.12.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b48a71598953ef5ed485c80f61d7f84ddab8d1127b8aa79b60c216eb9d1302ce |
|
MD5 | 2db99b529776318c2c4a7fb559e544c1 |
|
BLAKE2b-256 | f38e250c320cb6d471bcd33fdf0ffe92e267c6983d18c07872e6adee1479ea0b |