Skip to main content

No project description provided

Project description

Torch Lure

Chandelure

Depndencies

pip install git+https://github.com/Farama-Foundation/Minari.git@19565bd8cd33f2e4a3a9a8e4db372044b01ea8d3
pip install torchlure

Usage

import torchlure as lure

# Optimizers
lure.SophiaG(lr=1e-3, weight_decay=0.2)

# Functions
lure.tanh_exp(x)
lure.TanhExp()

lure.quantile_loss(y_pred, y_target, quantile=0.5)
lure.QuantileLoss(quantile=0.5)

lure.RMSNrom(dim=256, eps=1e-6)

# Noise Scheduler
lure.LinearNoiseScheduler(beta=1e-4, beta_end=0.02, num_timesteps=1000)
lure.CosineNoiseScheduler(max_beta=0.999, s=0.008, num_timesteps=1000):

Dataset

from torchlure.datasets import OfflineRLDataset, D4RLDataset

# Initial usage with download
# %%
dataset = D4RLDataset(
    dataset_id= "hopper-medium-expert-v2.2405",
    d4rl_name= "hopper-medium-expert-v2",
    env_id= "Hopper-v4",
)

# if you are download it once
dataset = D4RLDataset(
    dataset_id= "hopper-medium-expert-v2.2405",
)

See all datasets here

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchlure-0.2405.11.tar.gz (16.9 kB view details)

Uploaded Source

Built Distribution

torchlure-0.2405.11-py3-none-any.whl (16.9 kB view details)

Uploaded Python 3

File details

Details for the file torchlure-0.2405.11.tar.gz.

File metadata

  • Download URL: torchlure-0.2405.11.tar.gz
  • Upload date:
  • Size: 16.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.2

File hashes

Hashes for torchlure-0.2405.11.tar.gz
Algorithm Hash digest
SHA256 07b047b3e4366801e52a8b54bb9ae0a6dcb74baa91f2d041a6cbca89bfb76d49
MD5 2d02b4c0074ff784230e07a0efc7dfe9
BLAKE2b-256 b2a571c4877017ac1b277ffc9defcb05e15d37c7ad6a9017b34acff31c26444d

See more details on using hashes here.

File details

Details for the file torchlure-0.2405.11-py3-none-any.whl.

File metadata

File hashes

Hashes for torchlure-0.2405.11-py3-none-any.whl
Algorithm Hash digest
SHA256 e1da4cbb288e315e9835d86c3e63a5c31955a288050317f4e67071b4feee4780
MD5 d8261b97490720f77886ff9b9250e91a
BLAKE2b-256 96c0a8f54199b1739904a002284cd4bffeab2c6713ab6e5910b6941c3d079550

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page