Skip to main content

No project description provided

Project description

Torch Lure

Chandelure

Depndencies

pip install git+https://github.com/Farama-Foundation/Minari.git@19565bd8cd33f2e4a3a9a8e4db372044b01ea8d3
pip install torchlure

Usage

import torchlure as lure

# Optimizers
lure.SophiaG(lr=1e-3, weight_decay=0.2)

# Functions
lure.tanh_exp(x)
lure.TanhExp()

lure.quantile_loss(y_pred, y_target, quantile=0.5)
lure.QuantileLoss(quantile=0.5)

lure.RMSNrom(dim=256, eps=1e-6)

# Noise Scheduler
lure.LinearNoiseScheduler(beta=1e-4, beta_end=0.02, num_timesteps=1000)
lure.CosineNoiseScheduler(max_beta=0.999, s=0.008, num_timesteps=1000):

Dataset

from torchlure.datasets import OfflineRLDataset, D4RLDataset

# Initial usage with download
# %%
dataset = D4RLDataset(
    dataset_id= "hopper-medium-expert-v2.2405",
    d4rl_name= "hopper-medium-expert-v2",
    env_id= "Hopper-v4",
)

# if you are download it once
dataset = D4RLDataset(
    dataset_id= "hopper-medium-expert-v2.2405",
)

See all datasets here

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchlure-0.2405.12.tar.gz (16.9 kB view details)

Uploaded Source

Built Distribution

torchlure-0.2405.12-py3-none-any.whl (16.9 kB view details)

Uploaded Python 3

File details

Details for the file torchlure-0.2405.12.tar.gz.

File metadata

  • Download URL: torchlure-0.2405.12.tar.gz
  • Upload date:
  • Size: 16.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.2

File hashes

Hashes for torchlure-0.2405.12.tar.gz
Algorithm Hash digest
SHA256 2e1b347b3e39349d42fe46026256fb41f6bd21a5857857eeafa3256f0f9a591d
MD5 058e16d23e72f448a7f8d91733caa90a
BLAKE2b-256 4206ff59700386b30981fd9248a2716cf2eaaf60178f1685b49b6b4cbf1df42d

See more details on using hashes here.

File details

Details for the file torchlure-0.2405.12-py3-none-any.whl.

File metadata

File hashes

Hashes for torchlure-0.2405.12-py3-none-any.whl
Algorithm Hash digest
SHA256 dbf5b3ced9760c08a189da12dbc5bcd9db82699d2f50de50df8599e44222857f
MD5 169a20a330edac8ee7da20ee4791129f
BLAKE2b-256 dd4dddc7f1390e4674edcda9982202ee084d46d7557c156f61cc41575a562f42

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page