Skip to main content

No project description provided

Project description

Torch Lure

Chandelure

Depndencies

pip install git+https://github.com/Farama-Foundation/Minari.git@19565bd8cd33f2e4a3a9a8e4db372044b01ea8d3
pip install torchlure

Usage

import torchlure as lure

# Optimizers
lure.SophiaG(lr=1e-3, weight_decay=0.2)

# Functions
lure.tanh_exp(x)
lure.TanhExp()

lure.quantile_loss(y_pred, y_target, quantile=0.5)
lure.QuantileLoss(quantile=0.5)

lure.RMSNrom(dim=256, eps=1e-6)

# Noise Scheduler
lure.LinearNoiseScheduler(beta=1e-4, beta_end=0.02, num_timesteps=1000)
lure.CosineNoiseScheduler(max_beta=0.999, s=0.008, num_timesteps=1000):

Dataset

from torchlure.datasets import OfflineRLDataset, D4RLDataset

# Initial usage with download
# %%
dataset = D4RLDataset(
    dataset_id= "hopper-medium-expert-v2.2405",
    d4rl_name= "hopper-medium-expert-v2",
    env_id= "Hopper-v4",
)

# if you are download it once
dataset = D4RLDataset(
    dataset_id= "hopper-medium-expert-v2.2405",
)

See all datasets here

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchlure-0.2405.13.tar.gz (16.9 kB view details)

Uploaded Source

Built Distribution

torchlure-0.2405.13-py3-none-any.whl (16.9 kB view details)

Uploaded Python 3

File details

Details for the file torchlure-0.2405.13.tar.gz.

File metadata

  • Download URL: torchlure-0.2405.13.tar.gz
  • Upload date:
  • Size: 16.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.2

File hashes

Hashes for torchlure-0.2405.13.tar.gz
Algorithm Hash digest
SHA256 8b9aaeae33798e81f66a1a945a920b93aa18c3c5cd6cb08e387a2f321ae99422
MD5 7b59f671d749a94debb5850dd05cbc2f
BLAKE2b-256 bd5fe3e637ba41c6ad00a86cc0c282f36ab636dae75968b899e3d174cb16e4bc

See more details on using hashes here.

File details

Details for the file torchlure-0.2405.13-py3-none-any.whl.

File metadata

File hashes

Hashes for torchlure-0.2405.13-py3-none-any.whl
Algorithm Hash digest
SHA256 2231ad9a465ef166e1be3f9333756ce07fa13356eb39f76356e501a58072f999
MD5 8e7b89797bbfbd715a755a659dd65397
BLAKE2b-256 8c80f5eb92be2833acd15427e9ec2c36a4a695343d31e1e37aab9bc3e553a21b

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page