Skip to main content

No project description provided

Project description

Torch Lure

Chandelure

Depndencies

pip install git+https://github.com/Farama-Foundation/Minari.git@19565bd8cd33f2e4a3a9a8e4db372044b01ea8d3
pip install torchlure

Usage

import torchlure as lure

# Optimizers
lure.SophiaG(lr=1e-3, weight_decay=0.2)

# Functions
lure.tanh_exp(x)
lure.TanhExp()

lure.quantile_loss(y_pred, y_target, quantile=0.5)
lure.QuantileLoss(quantile=0.5)

lure.RMSNrom(dim=256, eps=1e-6)

# Noise Scheduler
lure.LinearNoiseScheduler(beta=1e-4, beta_end=0.02, num_timesteps=1000)
lure.CosineNoiseScheduler(max_beta=0.999, s=0.008, num_timesteps=1000):

Dataset

from torchlure.datasets import OfflineRLDataset, D4RLDataset

# Initial usage with download
# %%
dataset = D4RLDataset(
    dataset_id= "hopper-medium-expert-v2.2405",
    d4rl_name= "hopper-medium-expert-v2",
    env_id= "Hopper-v4",
)

# if you are download it once
dataset = D4RLDataset(
    dataset_id= "hopper-medium-expert-v2.2405",
)

See all datasets here

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchlure-0.2405.14.tar.gz (17.0 kB view details)

Uploaded Source

Built Distribution

torchlure-0.2405.14-py3-none-any.whl (17.0 kB view details)

Uploaded Python 3

File details

Details for the file torchlure-0.2405.14.tar.gz.

File metadata

  • Download URL: torchlure-0.2405.14.tar.gz
  • Upload date:
  • Size: 17.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.2

File hashes

Hashes for torchlure-0.2405.14.tar.gz
Algorithm Hash digest
SHA256 e760d3a86921d33f063fed3026d884e5a9faf704f0c12504d295dfebd030944e
MD5 fd8205c86bd3d89d6154d4b2454a212f
BLAKE2b-256 c566120d84843c59c1e2dcee42bbbcb17726356960c5b3a3235bfbb7bf03a646

See more details on using hashes here.

File details

Details for the file torchlure-0.2405.14-py3-none-any.whl.

File metadata

File hashes

Hashes for torchlure-0.2405.14-py3-none-any.whl
Algorithm Hash digest
SHA256 3094c0aa2b0ec8a80ccabbaff725368cc397b1af3ff309f3f7c7c6ec0d004514
MD5 616fc4de1eb364310790b0f2ca117614
BLAKE2b-256 fb0d7b9aa58c720597d3178147a1cd181911d6871306d6bca118c3f97c6e9763

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page