No project description provided
Project description
Torch Lure
Depndencies
pip install git+https://github.com/Farama-Foundation/Minari.git@19565bd8cd33f2e4a3a9a8e4db372044b01ea8d3
pip install torchlure
Usage
import torchlure as lure
# Optimizers
lure.SophiaG(lr=1e-3, weight_decay=0.2)
# Functions
lure.tanh_exp(x)
lure.TanhExp()
lure.quantile_loss(y_pred, y_target, quantile=0.5)
lure.QuantileLoss(quantile=0.5)
lure.RMSNrom(dim=256, eps=1e-6)
# Noise Scheduler
lure.LinearNoiseScheduler(beta=1e-4, beta_end=0.02, num_timesteps=1000)
lure.CosineNoiseScheduler(max_beta=0.999, s=0.008, num_timesteps=1000):
Dataset
from torchlure.datasets import OfflineRLDataset, D4RLDataset
dataset = D4RLDataset(
dataset_id="hopper-exppert-2405.1",
dataset_name="d4rl_hopper-expert-v2",
env_id="Hopper-v4",
)
dataset = D4RLDataset(
dataset_id="d4rl_halfcheetah-expert-2405",
dataset_name="d4rl_halfcheetah-expert-v2",
env_id= "HalfCheetah-v4",
)
ataset = D4RLDataset(
dataset_id="d4rl_walker2d-expert-2405",
dataset_name="d4rl_walker2d-expert-v2",
env_id= "Walker2d-v4",
)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
torchlure-0.2405.3.tar.gz
(12.5 kB
view details)
Built Distribution
File details
Details for the file torchlure-0.2405.3.tar.gz
.
File metadata
- Download URL: torchlure-0.2405.3.tar.gz
- Upload date:
- Size: 12.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.12.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 040e41b4282e1c506b0a925411066fb9cb98c146da277b0eb3cf415a0c784d77 |
|
MD5 | f07e176935526ed61472aa3fafffd250 |
|
BLAKE2b-256 | 4228eacc0fc56f24ade33878c0357901a3ce23a680f00977e5c92dacb0158d1f |
File details
Details for the file torchlure-0.2405.3-py3-none-any.whl
.
File metadata
- Download URL: torchlure-0.2405.3-py3-none-any.whl
- Upload date:
- Size: 12.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.12.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | eb631b26ec1d85bd358cb7c9fab6c297f925733787f0dd2488aaac402f987d34 |
|
MD5 | 1628fdd3d9bc44ab5a420ddf4813714d |
|
BLAKE2b-256 | 299fb14f03f546fc871c35811dbacba85aa0f38f610a9665b4887c3a15f6bf74 |