Skip to main content

No project description provided

Project description

Torch Lure

Chandelure

Depndencies

pip install git+https://github.com/Farama-Foundation/Minari.git@19565bd8cd33f2e4a3a9a8e4db372044b01ea8d3
pip install torchlure

Usage

import torchlure as lure

# Optimizers
lure.SophiaG(lr=1e-3, weight_decay=0.2)

# Functions
lure.tanh_exp(x)
lure.TanhExp()

lure.quantile_loss(y_pred, y_target, quantile=0.5)
lure.QuantileLoss(quantile=0.5)

lure.RMSNrom(dim=256, eps=1e-6)

# Noise Scheduler
lure.LinearNoiseScheduler(beta=1e-4, beta_end=0.02, num_timesteps=1000)
lure.CosineNoiseScheduler(max_beta=0.999, s=0.008, num_timesteps=1000):

Dataset

from torchlure.datasets import OfflineRLDataset, D4RLDataset


# Initial usage with download
dataset = D4RLDataset(
    dataset_id="hopper-exppert-2405.1",
    d4rl_name="d4rl_hopper-expert-v2",
    env_id="Hopper-v4",
)

dataset = D4RLDataset(
    dataset_id="d4rl_halfcheetah-expert-2405",
    d4rl_name="d4rl_halfcheetah-expert-v2",
    env_id= "HalfCheetah-v4",
)

dataset = D4RLDataset(
    dataset_id="d4rl_walker2d-expert-2405",
    d4rl_name="d4rl_walker2d-expert-v2",
    env_id= "Walker2d-v4",
)

# if you are download it once
dataset = D4RLDataset(
    dataset_id="d4rl_walker2d-expert-2405",
)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchlure-0.2405.4.tar.gz (12.6 kB view details)

Uploaded Source

Built Distribution

torchlure-0.2405.4-py3-none-any.whl (13.0 kB view details)

Uploaded Python 3

File details

Details for the file torchlure-0.2405.4.tar.gz.

File metadata

  • Download URL: torchlure-0.2405.4.tar.gz
  • Upload date:
  • Size: 12.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.2

File hashes

Hashes for torchlure-0.2405.4.tar.gz
Algorithm Hash digest
SHA256 6176d955e004e17ecc22af9ef01022ed0432316248b985eb3ab43aea07a6cb29
MD5 d073e8511616973ef97672a72d146bbb
BLAKE2b-256 3c5763c5754328ac3714008716a50f40a736c5880e341b838ba0b45389fa9f54

See more details on using hashes here.

File details

Details for the file torchlure-0.2405.4-py3-none-any.whl.

File metadata

  • Download URL: torchlure-0.2405.4-py3-none-any.whl
  • Upload date:
  • Size: 13.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.2

File hashes

Hashes for torchlure-0.2405.4-py3-none-any.whl
Algorithm Hash digest
SHA256 cfb8a8bc4683ad983bd1062c026db230ffd22cca8af787c133662b60da4a5432
MD5 515514170fc82f4dde2f17a05a4658b0
BLAKE2b-256 b4a8bfb8729359ba8ddab375078a6832dd915570f92db58389054ca79fdb5815

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page