Skip to main content

No project description provided

Project description

Torch Lure

Chandelure

Depndencies

pip install git+https://github.com/Farama-Foundation/Minari.git@19565bd8cd33f2e4a3a9a8e4db372044b01ea8d3
pip install torchlure

Usage

import torchlure as lure

# Optimizers
lure.SophiaG(lr=1e-3, weight_decay=0.2)

# Functions
lure.tanh_exp(x)
lure.TanhExp()

lure.quantile_loss(y_pred, y_target, quantile=0.5)
lure.QuantileLoss(quantile=0.5)

lure.RMSNrom(dim=256, eps=1e-6)

# Noise Scheduler
lure.LinearNoiseScheduler(beta=1e-4, beta_end=0.02, num_timesteps=1000)
lure.CosineNoiseScheduler(max_beta=0.999, s=0.008, num_timesteps=1000):

Dataset

from torchlure.datasets import OfflineRLDataset, D4RLDataset

# Initial usage with download
# %%
dataset = D4RLDataset(
    dataset_id= "hopper-medium-expert-v2.2405",
    d4rl_name= "hopper-medium-expert-v2",
    env_id= "Hopper-v4",
)

# if you are download it once
dataset = D4RLDataset(
    dataset_id= "hopper-medium-expert-v2.2405",
)

See all datasets here

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchlure-0.2405.8.tar.gz (15.2 kB view details)

Uploaded Source

Built Distribution

torchlure-0.2405.8-py3-none-any.whl (15.3 kB view details)

Uploaded Python 3

File details

Details for the file torchlure-0.2405.8.tar.gz.

File metadata

  • Download URL: torchlure-0.2405.8.tar.gz
  • Upload date:
  • Size: 15.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.2

File hashes

Hashes for torchlure-0.2405.8.tar.gz
Algorithm Hash digest
SHA256 9461ee5b1300d4d7dbd3d18c1571b897fc5d96d705bed4fcac7e87e298f737b5
MD5 4c77893cce2b3024f337a52e8059de6b
BLAKE2b-256 6bbd5c01822218b31e5f06617a604408e705618024d5eaa4c1ed27ba9f1d3cbe

See more details on using hashes here.

File details

Details for the file torchlure-0.2405.8-py3-none-any.whl.

File metadata

  • Download URL: torchlure-0.2405.8-py3-none-any.whl
  • Upload date:
  • Size: 15.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.2

File hashes

Hashes for torchlure-0.2405.8-py3-none-any.whl
Algorithm Hash digest
SHA256 301636fd6905eacb868a471f84d968a20e30fcc28fc98d073ba5635a20733544
MD5 6387ecdd695f776208b367800c220690
BLAKE2b-256 0a4579db9c3506e5bd1cd720983dfc65392572754962552bb4462b1ebfe59c6e

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page