Skip to main content

No project description provided

Project description

Torch Lure

Chandelure

Depndencies

pip install git+https://github.com/Farama-Foundation/Minari.git@19565bd8cd33f2e4a3a9a8e4db372044b01ea8d3
pip install torchlure

Usage

import torchlure as lure

# Optimizers
lure.SophiaG(lr=1e-3, weight_decay=0.2)

# Functions
lure.tanh_exp(x)
lure.TanhExp()

lure.quantile_loss(y_pred, y_target, quantile=0.5)
lure.QuantileLoss(quantile=0.5)

lure.RMSNrom(dim=256, eps=1e-6)

# Noise Scheduler
lure.LinearNoiseScheduler(beta=1e-4, beta_end=0.02, num_timesteps=1000)
lure.CosineNoiseScheduler(max_beta=0.999, s=0.008, num_timesteps=1000):

Dataset

from torchlure.datasets import OfflineRLDataset, D4RLDataset

# Initial usage with download
# %%
dataset = D4RLDataset(
    dataset_id= "hopper-medium-expert-v2.2405",
    d4rl_name= "hopper-medium-expert-v2",
    env_id= "Hopper-v4",
)

# if you are download it once
dataset = D4RLDataset(
    dataset_id= "hopper-medium-expert-v2.2405",
)

See all datasets here

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchlure-0.2405.9.tar.gz (15.2 kB view details)

Uploaded Source

Built Distribution

torchlure-0.2405.9-py3-none-any.whl (15.3 kB view details)

Uploaded Python 3

File details

Details for the file torchlure-0.2405.9.tar.gz.

File metadata

  • Download URL: torchlure-0.2405.9.tar.gz
  • Upload date:
  • Size: 15.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.2

File hashes

Hashes for torchlure-0.2405.9.tar.gz
Algorithm Hash digest
SHA256 37f016567d1e5eb378269f8e4d1e1e8a6eea969139c83c23c63b3f0f9b46cd7c
MD5 c192009f105fbab619293f915dcf5317
BLAKE2b-256 2ebd9d08ec703de646b0eab2bcbb117bc2c5879361cbd622ae8503c3366206fe

See more details on using hashes here.

File details

Details for the file torchlure-0.2405.9-py3-none-any.whl.

File metadata

  • Download URL: torchlure-0.2405.9-py3-none-any.whl
  • Upload date:
  • Size: 15.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.2

File hashes

Hashes for torchlure-0.2405.9-py3-none-any.whl
Algorithm Hash digest
SHA256 b4a8a93dd8357b7dc8b012d5a019279d7a7f53f8ff553fcadb9b8bdb0cc20ce8
MD5 e8d2178aa90e007c8caf936cad57f310
BLAKE2b-256 fb375eda93d3cdbf96e2ed95a111e7b651eb0266857ed68fc79e0f4b224e4942

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page