No project description provided
Project description
Torch Lure
Depndencies
pip install git+https://github.com/Farama-Foundation/Minari.git@19565bd8cd33f2e4a3a9a8e4db372044b01ea8d3
pip install torchlure
Usage
import torchlure as lure
# Optimizers
lure.SophiaG(lr=1e-3, weight_decay=0.2)
# Functions
lure.tanh_exp(x)
lure.TanhExp()
lure.quantile_loss(y_pred, y_target, quantile=0.5)
lure.QuantileLoss(quantile=0.5)
lure.RMSNrom(dim=256, eps=1e-6)
# Noise Scheduler
lure.LinearNoiseScheduler(beta=1e-4, beta_end=0.02, num_timesteps=1000)
lure.CosineNoiseScheduler(max_beta=0.999, s=0.008, num_timesteps=1000):
Dataset
from torchlure.datasets import OfflineRLDataset, D4RLDataset
# Initial usage with download
# %%
dataset = D4RLDataset(
dataset_id= "hopper-medium-expert-v2.2405",
d4rl_name= "hopper-medium-expert-v2",
env_id= "Hopper-v4",
)
# if you are download it once
dataset = D4RLDataset(
dataset_id= "hopper-medium-expert-v2.2405",
)
See all datasets here
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
torchlure-0.2405.9.tar.gz
(15.2 kB
view details)
Built Distribution
File details
Details for the file torchlure-0.2405.9.tar.gz
.
File metadata
- Download URL: torchlure-0.2405.9.tar.gz
- Upload date:
- Size: 15.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.12.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 37f016567d1e5eb378269f8e4d1e1e8a6eea969139c83c23c63b3f0f9b46cd7c |
|
MD5 | c192009f105fbab619293f915dcf5317 |
|
BLAKE2b-256 | 2ebd9d08ec703de646b0eab2bcbb117bc2c5879361cbd622ae8503c3366206fe |
File details
Details for the file torchlure-0.2405.9-py3-none-any.whl
.
File metadata
- Download URL: torchlure-0.2405.9-py3-none-any.whl
- Upload date:
- Size: 15.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.12.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b4a8a93dd8357b7dc8b012d5a019279d7a7f53f8ff553fcadb9b8bdb0cc20ce8 |
|
MD5 | e8d2178aa90e007c8caf936cad57f310 |
|
BLAKE2b-256 | fb375eda93d3cdbf96e2ed95a111e7b651eb0266857ed68fc79e0f4b224e4942 |