Skip to main content

No project description provided

Project description

Torch Lure

Chandelure

Depndencies

pip install git+https://github.com/Farama-Foundation/Minari.git@19565bd8cd33f2e4a3a9a8e4db372044b01ea8d3
pip install torchlure

Usage

import torchlure as lure

# Optimizers
lure.SophiaG(lr=1e-3, weight_decay=0.2)

# Functions
lure.tanh_exp(x)
lure.TanhExp()

lure.quantile_loss(y_pred, y_target, quantile=0.5)
lure.QuantileLoss(quantile=0.5)

lure.RMSNrom(dim=256, eps=1e-6)

# Noise Scheduler
lure.LinearNoiseScheduler(beta=1e-4, beta_end=0.02, num_timesteps=1000)
lure.CosineNoiseScheduler(max_beta=0.999, s=0.008, num_timesteps=1000):

Dataset

from torchlure.datasets import OfflineRLDataset, D4RLDataset

# Initial usage with download
# %%
dataset = D4RLDataset(
    dataset_id= "hopper-medium-expert-v2.2405",
    d4rl_name= "hopper-medium-expert-v2",
    env_id= "Hopper-v4",
)

# if you are download it once
dataset = D4RLDataset(
    dataset_id= "hopper-medium-expert-v2.2405",
)

See all datasets here

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchlure-0.2406.0.tar.gz (17.3 kB view details)

Uploaded Source

Built Distribution

torchlure-0.2406.0-py3-none-any.whl (17.3 kB view details)

Uploaded Python 3

File details

Details for the file torchlure-0.2406.0.tar.gz.

File metadata

  • Download URL: torchlure-0.2406.0.tar.gz
  • Upload date:
  • Size: 17.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.2

File hashes

Hashes for torchlure-0.2406.0.tar.gz
Algorithm Hash digest
SHA256 20ad833f691a25a3223ec95fa687af7daebae9206f7857d10a21d10e2d16704b
MD5 cfd622962908bcbbfd07e640d019f0ab
BLAKE2b-256 e071261f712e018b2e5eeccd532bc4e62f3063283ce5cf2591baef627954f40c

See more details on using hashes here.

File details

Details for the file torchlure-0.2406.0-py3-none-any.whl.

File metadata

File hashes

Hashes for torchlure-0.2406.0-py3-none-any.whl
Algorithm Hash digest
SHA256 4fae9c117735c7b7d6abdbd6be66c8d7abdefb9d986cee0fa94fcd857270870c
MD5 275831f245f60bae7d3936cf92a445d0
BLAKE2b-256 de60cb849ef9adbf43f4ec9c7d8812c6fcba4bf5800ca5ebb1e6aaa6789c07b7

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page