Skip to main content

No project description provided

Project description

Torch Lure

Chandelure

Depndencies

pip install git+https://github.com/Farama-Foundation/Minari.git@19565bd8cd33f2e4a3a9a8e4db372044b01ea8d3
pip install torchlure

Usage

import torchlure as lure

# Optimizers
lure.SophiaG(lr=1e-3, weight_decay=0.2)

# Functions
lure.tanh_exp(x)
lure.TanhExp()

lure.quantile_loss(y_pred, y_target, quantile=0.5)
lure.QuantileLoss(quantile=0.5)

lure.RMSNrom(dim=256, eps=1e-6)

# Noise Scheduler
lure.LinearNoiseScheduler(beta=1e-4, beta_end=0.02, num_timesteps=1000)
lure.CosineNoiseScheduler(max_beta=0.999, s=0.008, num_timesteps=1000):

Dataset

from torchlure.datasets import MinariEpisodeDataset, MinariTrajectoryDataset

env = gym.make("Hopper-V4")
minari_dataset = MinariEpisodeDataset("2048.2407.2")
minari_dataset.create(env, n_episodes=100)
minari_dataset.info()

traj_dataset = MinariTrajectoryDataset(minari_dataset, traj_len=20)

ep = traj_dataset[2]
ep["observations"].shape, ep["actions"].shape, ep["rewards"].shape, ep[
    "terminations"
].shape, ep["truncate"].shape

ep = traj_dataset[[3, 8, 15]]
ep = traj_dataset[np.arange(16)]
ep = traj_dataset[torch.arange(16)]
ep = traj_dataset[-16:]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchlure-0.2407.0.tar.gz (18.6 kB view details)

Uploaded Source

Built Distribution

torchlure-0.2407.0-py3-none-any.whl (18.6 kB view details)

Uploaded Python 3

File details

Details for the file torchlure-0.2407.0.tar.gz.

File metadata

  • Download URL: torchlure-0.2407.0.tar.gz
  • Upload date:
  • Size: 18.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.2

File hashes

Hashes for torchlure-0.2407.0.tar.gz
Algorithm Hash digest
SHA256 ae5a1686880740180d8fab7f45495caceb1765e7fa0df2de6fdf1c371ff59f03
MD5 a56b5040a31bbd3372f7a4cf8d4ce02f
BLAKE2b-256 5d561a4258fc6a2d589a7b616ac20963df5dfc6785505d133abdb73df8900fc8

See more details on using hashes here.

File details

Details for the file torchlure-0.2407.0-py3-none-any.whl.

File metadata

File hashes

Hashes for torchlure-0.2407.0-py3-none-any.whl
Algorithm Hash digest
SHA256 217771a1114138720dbdefdc96780c528d963867916068fcd749142767a2706c
MD5 78d0fdc17f6e2a0e2125e6a2c7d50bc2
BLAKE2b-256 7cb5cca4e9de9eff2036f6d1921cabe4555c8c198a3090c6015da40ee867905b

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page