Skip to main content

No project description provided

Project description

Torch Lure

Chandelure

Depndencies

pip install git+https://github.com/Farama-Foundation/Minari.git@19565bd8cd33f2e4a3a9a8e4db372044b01ea8d3
pip install torchlure

Usage

import torchlure as lure

# Optimizers
lure.SophiaG(lr=1e-3, weight_decay=0.2)

# Functions
lure.tanh_exp(x)
lure.TanhExp()

lure.quantile_loss(y_pred, y_target, quantile=0.5)
lure.QuantileLoss(quantile=0.5)

lure.RMSNrom(dim=256, eps=1e-6)

# Noise Scheduler
lure.LinearNoiseScheduler(beta=1e-4, beta_end=0.02, num_timesteps=1000)
lure.CosineNoiseScheduler(max_beta=0.999, s=0.008, num_timesteps=1000):

Dataset

import gymnasium as gym
import numpy as np
import torch
from torchlure.datasets import MinariEpisodeDataset, MinariTrajectoryDataset

env = gym.make("Hopper-v4")
minari_dataset = MinariEpisodeDataset("Hopper-v4.2407")
minari_dataset.create(env, n_episodes=100)
minari_dataset.info()
# Observation space: Box(-inf, inf, (11,), float64)
# Action space: Box(-1.0, 1.0, (3,), float32)
# Total episodes: 100
# Total steps: 2,182

traj_dataset = MinariTrajectoryDataset(minari_dataset, traj_len=20)

ep = traj_dataset[2]
ep = traj_dataset[[3, 8, 15]]
ep = traj_dataset[np.arange(16)]
ep = traj_dataset[torch.arange(16)]
ep = traj_dataset[-16:]

ep["observations"].shape, ep["actions"].shape, ep["rewards"].shape, ep[
    "terminations"
].shape, ep["truncate"].shape
# (torch.Size([16, 20, 4, 4, 16]),
#  torch.Size([16, 20]),
#  torch.Size([16, 20]),
#  torch.Size([16, 20]),
#  torch.Size([16, 20]))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchlure-0.2407.1.tar.gz (19.0 kB view details)

Uploaded Source

Built Distribution

torchlure-0.2407.1-py3-none-any.whl (18.7 kB view details)

Uploaded Python 3

File details

Details for the file torchlure-0.2407.1.tar.gz.

File metadata

  • Download URL: torchlure-0.2407.1.tar.gz
  • Upload date:
  • Size: 19.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.2

File hashes

Hashes for torchlure-0.2407.1.tar.gz
Algorithm Hash digest
SHA256 0cb6fd8a259ff56f25d72f434704003f7098fede7928c37c3c8517bb7de69aba
MD5 42d599c90e320944da1a0a2e8ea214dd
BLAKE2b-256 b8cecce30c751e004b9d7a90a78798a0c291f66bd4d242943cb3134be30cc7dd

See more details on using hashes here.

File details

Details for the file torchlure-0.2407.1-py3-none-any.whl.

File metadata

File hashes

Hashes for torchlure-0.2407.1-py3-none-any.whl
Algorithm Hash digest
SHA256 5425a73ed7713c14cc3a1f8c5ea7c2f9ed86272c5b1c2d78395f31e5caab7bca
MD5 947e5ca958c916284896838389e610e1
BLAKE2b-256 8a749ab7a8e5ab27253eb6f56caadf145bbfe9d93d44553df5cbc7641222e940

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page