Skip to main content

No project description provided

Project description

Torch Lure

Chandelure

Installations

pip install torchlure

Usage

import torchlure as lure

# Optimizers
lure.SophiaG(lr=1e-3, weight_decay=0.2)

# Functions
lure.tanh_exp(x)
lure.TanhExp()

lure.quantile_loss(y_pred, y_target, quantile=0.5)
lure.QuantileLoss(quantile=0.5)

lure.RMSNrom(dim=256, eps=1e-6)

# Noise Scheduler
lure.LinearNoiseScheduler(beta=1e-4, beta_end=0.02, num_timesteps=1000)
lure.CosineNoiseScheduler(max_beta=0.999, s=0.008, num_timesteps=1000):


lure.ReLUKAN(width=[11, 16, 16, 2], grid=5, k=3)

lure.create_relukan_network(
    input_dim=11,
    output_dim=2,
    hidden_dim=32,
    num_layers=3,
    grid=5,
    k=3,
)
import torchlure as lure

# Optimizers
lure.SophiaG(lr=1e-3, weight_decay=0.2)

# Functions
lure.tanh_exp(x)
lure.TanhExp()

lure.quantile_loss(y_pred, y_target, quantile=0.5)
lure.QuantileLoss(quantile=0.5)

lure.RMSNrom(dim=256, eps=1e-6)

# Noise Scheduler
lure.LinearNoiseScheduler(beta=1e-4, beta_end=0.02, num_timesteps=1000)
lure.CosineNoiseScheduler(max_beta=0.999, s=0.008, num_timesteps=1000):

Dataset

import gymnasium as gym
import numpy as np
import torch
from torchlure.datasets import MinariEpisodeDataset, MinariTrajectoryDataset
from torchtyping import TensorType

def return_to_go(rewards: TensorType[..., "T"], gamma: float) -> TensorType[..., "T"]:
    if gamma == 1.0:
        return rewards.flip(-1).cumsum(-1).flip(-1)

    seq_len = rewards.shape[-1]
    rtgs = torch.zeros_like(rewards)
    rtg = torch.zeros_like(rewards[..., 0])

    for i in range(seq_len - 1, -1, -1):
        rtg = rewards[..., i] + gamma * rtg
        rtgs[..., i] = rtg

    return rtgs


env = gym.make("Hopper-v4")
minari_dataset = MinariEpisodeDataset("Hopper-random-v0")
minari_dataset.create(env, n_episodes=100, exist_ok=True)
minari_dataset.info()
# Observation space: Box(-inf, inf, (11,), float64)
# Action space: Box(-1.0, 1.0, (3,), float32)
# Total episodes: 100
# Total steps: 2,182

traj_dataset = MinariTrajectoryDataset(minari_dataset, traj_len=20, {
    "returns": lambda ep: return_to_go(torch.tensor(ep.rewards), 0.99),
})

traj = traj_dataset[2]
traj = traj_dataset[[3, 8, 15]]
traj = traj_dataset[np.arange(16)]
traj = traj_dataset[torch.arange(16)]
traj = traj_dataset[-16:]
traj["observations"].shape, traj["actions"].shape, traj["rewards"].shape, traj[
    "terminated"
].shape, traj["truncated"].shape, traj["timesteps"].shape
# (torch.Size([16, 20, 4, 4, 16]),
#  torch.Size([16, 20]),
#  torch.Size([16, 20]),
#  torch.Size([16, 20]),
#  torch.Size([16, 20]),
#  torch.Size([16, 20]))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchlure-0.2407.15.tar.gz (19.6 kB view details)

Uploaded Source

Built Distribution

torchlure-0.2407.15-py3-none-any.whl (19.4 kB view details)

Uploaded Python 3

File details

Details for the file torchlure-0.2407.15.tar.gz.

File metadata

  • Download URL: torchlure-0.2407.15.tar.gz
  • Upload date:
  • Size: 19.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.2

File hashes

Hashes for torchlure-0.2407.15.tar.gz
Algorithm Hash digest
SHA256 dd27a19adb6285136d8c33daf83d8ae46c596d07a2833a6d548305efef23a550
MD5 d0ba69b10cd5a8b7d71235bf68d3f755
BLAKE2b-256 335697f56cec76a14d215cf8e4235188628ad7fd19df4b4fdbbb188515b2635d

See more details on using hashes here.

File details

Details for the file torchlure-0.2407.15-py3-none-any.whl.

File metadata

File hashes

Hashes for torchlure-0.2407.15-py3-none-any.whl
Algorithm Hash digest
SHA256 d6ac4ae4dbf1dcf0713ef0dfeb32aaf589164d131439c4edefc4ab1060301e09
MD5 f7b36787e1714578ad3b66749107d94e
BLAKE2b-256 2f69ac070d94c4562cddb43bc2f29fb4f96c06f54ea407308466213e0c37f51f

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page