Skip to main content

No project description provided

Project description

Torch Lure

Chandelure

Installations

pip install torchlure

Usage

import torchlure as lure

# Optimizers
lure.SophiaG(lr=1e-3, weight_decay=0.2)

# Functions
lure.tanh_exp(x)
lure.TanhExp()

lure.quantile_loss(y_pred, y_target, quantile=0.5)
lure.QuantileLoss(quantile=0.5)

lure.RMSNrom(dim=256, eps=1e-6)

# Noise Scheduler
lure.LinearNoiseScheduler(beta=1e-4, beta_end=0.02, num_timesteps=1000)
lure.CosineNoiseScheduler(max_beta=0.999, s=0.008, num_timesteps=1000):


lure.ReLUKAN(width=[11, 16, 16, 2], grid=5, k=3)

lure.create_relukan_network(
    input_dim=11,
    output_dim=2,
    hidden_dim=32,
    num_layers=3,
    grid=5,
    k=3,
)
import torchlure as lure

# Optimizers
lure.SophiaG(lr=1e-3, weight_decay=0.2)

# Functions
lure.tanh_exp(x)
lure.TanhExp()

lure.quantile_loss(y_pred, y_target, quantile=0.5)
lure.QuantileLoss(quantile=0.5)

lure.RMSNrom(dim=256, eps=1e-6)

# Noise Scheduler
lure.LinearNoiseScheduler(beta=1e-4, beta_end=0.02, num_timesteps=1000)
lure.CosineNoiseScheduler(max_beta=0.999, s=0.008, num_timesteps=1000):

Dataset

import gymnasium as gym
import numpy as np
import torch
from torchlure.datasets import MinariEpisodeDataset, MinariTrajectoryDataset
from torchtyping import TensorType

def return_to_go(rewards: TensorType[..., "T"], gamma: float) -> TensorType[..., "T"]:
    if gamma == 1.0:
        return rewards.flip(-1).cumsum(-1).flip(-1)

    seq_len = rewards.shape[-1]
    rtgs = torch.zeros_like(rewards)
    rtg = torch.zeros_like(rewards[..., 0])

    for i in range(seq_len - 1, -1, -1):
        rtg = rewards[..., i] + gamma * rtg
        rtgs[..., i] = rtg

    return rtgs


env = gym.make("Hopper-v4")
minari_dataset = MinariEpisodeDataset("Hopper-random-v0")
minari_dataset.create(env, n_episodes=100, exist_ok=True)
minari_dataset.info()
# Observation space: Box(-inf, inf, (11,), float64)
# Action space: Box(-1.0, 1.0, (3,), float32)
# Total episodes: 100
# Total steps: 2,182

traj_dataset = MinariTrajectoryDataset(minari_dataset, traj_len=20, {
    "returns": lambda ep: return_to_go(torch.tensor(ep.rewards), 0.99),
})

traj = traj_dataset[2]
traj = traj_dataset[[3, 8, 15]]
traj = traj_dataset[np.arange(16)]
traj = traj_dataset[torch.arange(16)]
traj = traj_dataset[-16:]
traj["observations"].shape, traj["actions"].shape, traj["rewards"].shape, traj[
    "terminated"
].shape, traj["truncated"].shape, traj["timesteps"].shape
# (torch.Size([16, 20, 4, 4, 16]),
#  torch.Size([16, 20]),
#  torch.Size([16, 20]),
#  torch.Size([16, 20]),
#  torch.Size([16, 20]),
#  torch.Size([16, 20]))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchlure-0.2407.21.tar.gz (21.0 kB view details)

Uploaded Source

Built Distribution

torchlure-0.2407.21-py3-none-any.whl (21.1 kB view details)

Uploaded Python 3

File details

Details for the file torchlure-0.2407.21.tar.gz.

File metadata

  • Download URL: torchlure-0.2407.21.tar.gz
  • Upload date:
  • Size: 21.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.2

File hashes

Hashes for torchlure-0.2407.21.tar.gz
Algorithm Hash digest
SHA256 64d97b0bac9a87fbac5959aed2d20c45c2d74846d303217417fe8abd476a72d9
MD5 be09eb9af2583becfdd14f3b137a09d8
BLAKE2b-256 8d6151f69d0ea0f86a407b8201d5e188a55cbf6d73a05c665559ea6540b5364f

See more details on using hashes here.

File details

Details for the file torchlure-0.2407.21-py3-none-any.whl.

File metadata

File hashes

Hashes for torchlure-0.2407.21-py3-none-any.whl
Algorithm Hash digest
SHA256 eed55a90ada279501a9e8709e00d86d7fa6d8dc359249f0d20b1b407ad09e409
MD5 73c4c361ac12e897bd6fb8b619584378
BLAKE2b-256 05c31e74a4e37072c742ab9a064ac754665403dd2b99d9a441d89f9301a8f21f

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page