Skip to main content

No project description provided

Project description

Torch Lure

Chandelure

Depndencies

pip install git+https://github.com/Farama-Foundation/Minari.git@19565bd8cd33f2e4a3a9a8e4db372044b01ea8d3
pip install torchlure

Usage

import torchlure as lure

# Optimizers
lure.SophiaG(lr=1e-3, weight_decay=0.2)

# Functions
lure.tanh_exp(x)
lure.TanhExp()

lure.quantile_loss(y_pred, y_target, quantile=0.5)
lure.QuantileLoss(quantile=0.5)

lure.RMSNrom(dim=256, eps=1e-6)

# Noise Scheduler
lure.LinearNoiseScheduler(beta=1e-4, beta_end=0.02, num_timesteps=1000)
lure.CosineNoiseScheduler(max_beta=0.999, s=0.008, num_timesteps=1000):

Dataset

import gymnasium as gym
import numpy as np
import torch
from torchlure.datasets import MinariEpisodeDataset, MinariTrajectoryDataset

env = gym.make("Hopper-v4")
minari_dataset = MinariEpisodeDataset("Hopper-v4.2407")
minari_dataset.create(env, n_episodes=100, exist_ok=True)
minari_dataset.info()
# Observation space: Box(-inf, inf, (11,), float64)
# Action space: Box(-1.0, 1.0, (3,), float32)
# Total episodes: 100
# Total steps: 2,182

traj_dataset = MinariTrajectoryDataset(minari_dataset, traj_len=20)

ep = traj_dataset[2]
ep = traj_dataset[[3, 8, 15]]
ep = traj_dataset[np.arange(16)]
ep = traj_dataset[torch.arange(16)]
ep = traj_dataset[-16:]

ep["observations"].shape, ep["actions"].shape, ep["rewards"].shape, ep[
    "terminations"
].shape, ep["truncate"].shape
# (torch.Size([16, 20, 4, 4, 16]),
#  torch.Size([16, 20]),
#  torch.Size([16, 20]),
#  torch.Size([16, 20]),
#  torch.Size([16, 20]))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchlure-0.2407.3.tar.gz (19.0 kB view details)

Uploaded Source

Built Distribution

torchlure-0.2407.3-py3-none-any.whl (18.7 kB view details)

Uploaded Python 3

File details

Details for the file torchlure-0.2407.3.tar.gz.

File metadata

  • Download URL: torchlure-0.2407.3.tar.gz
  • Upload date:
  • Size: 19.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.2

File hashes

Hashes for torchlure-0.2407.3.tar.gz
Algorithm Hash digest
SHA256 1f13cfc647e5428021897ffd58cbddc5607550dec21a64f5bc4fe86c65190499
MD5 640e89db633776e943370eb334f16b46
BLAKE2b-256 26beacd72f8ada70e5d65c67d31fdb1e728407178a1e456f9bf7b9033da1a096

See more details on using hashes here.

File details

Details for the file torchlure-0.2407.3-py3-none-any.whl.

File metadata

File hashes

Hashes for torchlure-0.2407.3-py3-none-any.whl
Algorithm Hash digest
SHA256 25a1d00315f7552a86ca91aad29578e7a5f51784ccc483c6565044b736abe98e
MD5 9bbfe69a244d86243970ce81027727af
BLAKE2b-256 32848aea6d086d228e40abf0b141544047cab527a385998d7c4c475d74040107

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page