Skip to main content

No project description provided

Project description

Torch Lure

Chandelure

Depndencies

pip install git+https://github.com/Farama-Foundation/Minari.git@19565bd8cd33f2e4a3a9a8e4db372044b01ea8d3
pip install torchlure

Usage

import torchlure as lure

# Optimizers
lure.SophiaG(lr=1e-3, weight_decay=0.2)

# Functions
lure.tanh_exp(x)
lure.TanhExp()

lure.quantile_loss(y_pred, y_target, quantile=0.5)
lure.QuantileLoss(quantile=0.5)

lure.RMSNrom(dim=256, eps=1e-6)

# Noise Scheduler
lure.LinearNoiseScheduler(beta=1e-4, beta_end=0.02, num_timesteps=1000)
lure.CosineNoiseScheduler(max_beta=0.999, s=0.008, num_timesteps=1000):

Dataset

import gymnasium as gym
import numpy as np
import torch
from torchlure.datasets import MinariEpisodeDataset, MinariTrajectoryDataset

env = gym.make("Hopper-v4")
minari_dataset = MinariEpisodeDataset("Hopper-v4.2407")
minari_dataset.create(env, n_episodes=100, exist_ok=True)
minari_dataset.info()
# Observation space: Box(-inf, inf, (11,), float64)
# Action space: Box(-1.0, 1.0, (3,), float32)
# Total episodes: 100
# Total steps: 2,182

traj_dataset = MinariTrajectoryDataset(minari_dataset, traj_len=20)

ep = traj_dataset[2]
ep = traj_dataset[[3, 8, 15]]
ep = traj_dataset[np.arange(16)]
ep = traj_dataset[torch.arange(16)]
ep = traj_dataset[-16:]

ep["observations"].shape, ep["actions"].shape, ep["rewards"].shape, ep[
    "terminations"
].shape, ep["truncate"].shape
# (torch.Size([16, 20, 4, 4, 16]),
#  torch.Size([16, 20]),
#  torch.Size([16, 20]),
#  torch.Size([16, 20]),
#  torch.Size([16, 20]))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchlure-0.2407.4.tar.gz (19.0 kB view details)

Uploaded Source

Built Distribution

torchlure-0.2407.4-py3-none-any.whl (18.8 kB view details)

Uploaded Python 3

File details

Details for the file torchlure-0.2407.4.tar.gz.

File metadata

  • Download URL: torchlure-0.2407.4.tar.gz
  • Upload date:
  • Size: 19.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.2

File hashes

Hashes for torchlure-0.2407.4.tar.gz
Algorithm Hash digest
SHA256 ed3d4ce09722b7827f0247f2dae125e1e15f7a615f1f01fc3a749ca246328c59
MD5 6ee83b0b8f222f8157212b35cbf4519f
BLAKE2b-256 13c935af276133297d1f635e703f59d3c02e37cff517aaf0f612ebf35e19b017

See more details on using hashes here.

File details

Details for the file torchlure-0.2407.4-py3-none-any.whl.

File metadata

File hashes

Hashes for torchlure-0.2407.4-py3-none-any.whl
Algorithm Hash digest
SHA256 3e2c204dc5daf84122b9641d8e3d4a1a06a276e3abd882fae5c23fcc5270b142
MD5 0ab0fc4dec059537c7eeecfc9d0a6ce7
BLAKE2b-256 2f4ab84bab585c97d8edc677aed0030bf67dc6a364c49c96716d0da94177d8b9

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page