Skip to main content

No project description provided

Project description

Torch Lure

Chandelure

Installations

pip install torchlure

Usage

import torchlure as lure

# Optimizers
lure.SophiaG(lr=1e-3, weight_decay=0.2)

# Functions
lure.tanh_exp(x)
lure.TanhExp()

lure.quantile_loss(y_pred, y_target, quantile=0.5)
lure.QuantileLoss(quantile=0.5)

lure.RMSNrom(dim=256, eps=1e-6)

# Noise Scheduler
lure.LinearNoiseScheduler(beta=1e-4, beta_end=0.02, num_timesteps=1000)
lure.CosineNoiseScheduler(max_beta=0.999, s=0.008, num_timesteps=1000):

Dataset

import gymnasium as gym
import numpy as np
import torch
from torchlure.datasets import MinariEpisodeDataset, MinariTrajectoryDataset

env = gym.make("Hopper-v4")
minari_dataset = MinariEpisodeDataset("Hopper-v4.2407")
minari_dataset.create(env, n_episodes=100, exist_ok=True)
minari_dataset.info()
# Observation space: Box(-inf, inf, (11,), float64)
# Action space: Box(-1.0, 1.0, (3,), float32)
# Total episodes: 100
# Total steps: 2,182

traj_dataset = MinariTrajectoryDataset(minari_dataset, traj_len=20)

traj = traj_dataset[2]
traj = traj_dataset[[3, 8, 15]]
traj = traj_dataset[np.arange(16)]
traj = traj_dataset[torch.arange(16)]
traj = traj_dataset[-16:]
traj["observations"].shape, traj["actions"].shape, traj["rewards"].shape, traj[
    "terminated"
].shape, traj["truncated"].shape, traj["timesteps"].shape
# (torch.Size([16, 20, 4, 4, 16]),
#  torch.Size([16, 20]),
#  torch.Size([16, 20]),
#  torch.Size([16, 20]),
#  torch.Size([16, 20]),
#  torch.Size([16, 20]))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchlure-0.2407.6.tar.gz (19.1 kB view details)

Uploaded Source

Built Distribution

torchlure-0.2407.6-py3-none-any.whl (18.8 kB view details)

Uploaded Python 3

File details

Details for the file torchlure-0.2407.6.tar.gz.

File metadata

  • Download URL: torchlure-0.2407.6.tar.gz
  • Upload date:
  • Size: 19.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.2

File hashes

Hashes for torchlure-0.2407.6.tar.gz
Algorithm Hash digest
SHA256 799fe2156f84becf860b9d148a9fe3683e41dc42f7307c3797b5235b05512341
MD5 3a92d6081580dc4ad79405e268333013
BLAKE2b-256 77f688c56d29b56aef9adb5495c254d739b42f112af8986d39423b251a9f66d7

See more details on using hashes here.

File details

Details for the file torchlure-0.2407.6-py3-none-any.whl.

File metadata

File hashes

Hashes for torchlure-0.2407.6-py3-none-any.whl
Algorithm Hash digest
SHA256 fe1698c531f81cf463c968fc4c455d60aa119a5e2959f1b48eb1f1a55beca93d
MD5 88266379f97442b4eccef7c717ee224c
BLAKE2b-256 774f43f2bfaaa84cbd02a6c0434f3400d423346bc45d1688d43fde188d196f5e

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page