Skip to main content

No project description provided

Project description

Torch Lure

Chandelure

Installations

pip install torchlure

Usage

import torchlure as lure

# Optimizers
lure.SophiaG(lr=1e-3, weight_decay=0.2)

# Functions
lure.tanh_exp(x)
lure.TanhExp()

lure.quantile_loss(y_pred, y_target, quantile=0.5)
lure.QuantileLoss(quantile=0.5)

lure.RMSNrom(dim=256, eps=1e-6)

# Noise Scheduler
lure.LinearNoiseScheduler(beta=1e-4, beta_end=0.02, num_timesteps=1000)
lure.CosineNoiseScheduler(max_beta=0.999, s=0.008, num_timesteps=1000):

Dataset

import gymnasium as gym
import numpy as np
import torch
from torchlure.datasets import MinariEpisodeDataset, MinariTrajectoryDataset

env = gym.make("Hopper-v4")
minari_dataset = MinariEpisodeDataset("Hopper-v4.2407")
minari_dataset.create(env, n_episodes=100, exist_ok=True)
minari_dataset.info()
# Observation space: Box(-inf, inf, (11,), float64)
# Action space: Box(-1.0, 1.0, (3,), float32)
# Total episodes: 100
# Total steps: 2,182

traj_dataset = MinariTrajectoryDataset(minari_dataset, traj_len=20)

traj = traj_dataset[2]
traj = traj_dataset[[3, 8, 15]]
traj = traj_dataset[np.arange(16)]
traj = traj_dataset[torch.arange(16)]
traj = traj_dataset[-16:]
traj["observations"].shape, traj["actions"].shape, traj["rewards"].shape, traj[
    "terminated"
].shape, traj["truncated"].shape, traj["timesteps"].shape
# (torch.Size([16, 20, 4, 4, 16]),
#  torch.Size([16, 20]),
#  torch.Size([16, 20]),
#  torch.Size([16, 20]),
#  torch.Size([16, 20]),
#  torch.Size([16, 20]))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchlure-0.2407.7.tar.gz (19.1 kB view details)

Uploaded Source

Built Distribution

torchlure-0.2407.7-py3-none-any.whl (18.8 kB view details)

Uploaded Python 3

File details

Details for the file torchlure-0.2407.7.tar.gz.

File metadata

  • Download URL: torchlure-0.2407.7.tar.gz
  • Upload date:
  • Size: 19.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.2

File hashes

Hashes for torchlure-0.2407.7.tar.gz
Algorithm Hash digest
SHA256 b1cc0fe8546bc2ec5562dd50a62aa3a307b5f301eb8004a3a4296f1cc61c3167
MD5 742fb281f2265f4dc5a49d57f23d5f3b
BLAKE2b-256 1a3670f28f9b8fa3efdc841f2cce53821e03beb82aa9fd03d308d88d88d947aa

See more details on using hashes here.

File details

Details for the file torchlure-0.2407.7-py3-none-any.whl.

File metadata

File hashes

Hashes for torchlure-0.2407.7-py3-none-any.whl
Algorithm Hash digest
SHA256 b784eba113765c7202cd9689d24a53c0cae5ce7e8b01e4f8bdfd86c8241d80f9
MD5 5868255c3f0ed4b262a9000d9d2ab12a
BLAKE2b-256 9eea3837439da0e774d6410ff41cb5b4fc3b3d155d929492fc48936d8d95d135

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page