Skip to main content

No project description provided

Project description

Torch Lure

Chandelure

Installations

pip install torchlure

Usage

import torchlure as lure

# Optimizers
lure.SophiaG(lr=1e-3, weight_decay=0.2)

# Functions
lure.tanh_exp(x)
lure.TanhExp()

lure.quantile_loss(y_pred, y_target, quantile=0.5)
lure.QuantileLoss(quantile=0.5)

lure.RMSNrom(dim=256, eps=1e-6)

# Noise Scheduler
lure.LinearNoiseScheduler(beta=1e-4, beta_end=0.02, num_timesteps=1000)
lure.CosineNoiseScheduler(max_beta=0.999, s=0.008, num_timesteps=1000):

Dataset

import gymnasium as gym
import numpy as np
import torch
from torchlure.datasets import MinariEpisodeDataset, MinariTrajectoryDataset

env = gym.make("Hopper-v4")
minari_dataset = MinariEpisodeDataset("Hopper-v4.2407")
minari_dataset.create(env, n_episodes=100, exist_ok=True)
minari_dataset.info()
# Observation space: Box(-inf, inf, (11,), float64)
# Action space: Box(-1.0, 1.0, (3,), float32)
# Total episodes: 100
# Total steps: 2,182

traj_dataset = MinariTrajectoryDataset(minari_dataset, traj_len=20)

traj = traj_dataset[2]
traj = traj_dataset[[3, 8, 15]]
traj = traj_dataset[np.arange(16)]
traj = traj_dataset[torch.arange(16)]
traj = traj_dataset[-16:]
traj["observations"].shape, traj["actions"].shape, traj["rewards"].shape, traj[
    "terminated"
].shape, traj["truncated"].shape, traj["timesteps"].shape
# (torch.Size([16, 20, 4, 4, 16]),
#  torch.Size([16, 20]),
#  torch.Size([16, 20]),
#  torch.Size([16, 20]),
#  torch.Size([16, 20]),
#  torch.Size([16, 20]))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchlure-0.2407.8.tar.gz (19.1 kB view details)

Uploaded Source

Built Distribution

torchlure-0.2407.8-py3-none-any.whl (18.8 kB view details)

Uploaded Python 3

File details

Details for the file torchlure-0.2407.8.tar.gz.

File metadata

  • Download URL: torchlure-0.2407.8.tar.gz
  • Upload date:
  • Size: 19.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.2

File hashes

Hashes for torchlure-0.2407.8.tar.gz
Algorithm Hash digest
SHA256 926dba36a9895b03321d96b58f3f563d1936eedf61a1e341b04bb7c4a1f06bc0
MD5 d46bbfe7df24de6563afa1ff2a191e28
BLAKE2b-256 f2511933f940a5e9e14bd02409a40b2cd63b16bb694660b674884d2c8a9e3540

See more details on using hashes here.

File details

Details for the file torchlure-0.2407.8-py3-none-any.whl.

File metadata

File hashes

Hashes for torchlure-0.2407.8-py3-none-any.whl
Algorithm Hash digest
SHA256 ce1638b6c47c7fd9236b862cccb6c193d9090b8fbc2dd99144d8d601c1096aa3
MD5 c6d8b0529ca3611ac0f725b4943a1f4e
BLAKE2b-256 b25c6c6a1e7741516c6d96fa69f174986545ac694f3801f209bdfdd723148516

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page