Skip to main content

No project description provided

Project description

Torch Lure

Chandelure

Installations

pip install torchlure

Usage

import torchlure as lure

# Optimizers
lure.SophiaG(lr=1e-3, weight_decay=0.2)

# Functions
lure.tanh_exp(x)
lure.TanhExp()

lure.quantile_loss(y_pred, y_target, quantile=0.5)
lure.QuantileLoss(quantile=0.5)

lure.RMSNrom(dim=256, eps=1e-6)

# Noise Scheduler
lure.LinearNoiseScheduler(beta=1e-4, beta_end=0.02, num_timesteps=1000)
lure.CosineNoiseScheduler(max_beta=0.999, s=0.008, num_timesteps=1000):


lure.ReLUKAN(width=[11, 16, 16, 2], grid=5, k=3)

lure.create_relukan_network(
    input_dim=11,
    output_dim=2,
    hidden_dim=32,
    num_layers=3,
    grid=5,
    k=3,
)
import torchlure as lure

# Optimizers
lure.SophiaG(lr=1e-3, weight_decay=0.2)

# Functions
lure.tanh_exp(x)
lure.TanhExp()

lure.quantile_loss(y_pred, y_target, quantile=0.5)
lure.QuantileLoss(quantile=0.5)

lure.RMSNrom(dim=256, eps=1e-6)

# Noise Scheduler
lure.LinearNoiseScheduler(beta=1e-4, beta_end=0.02, num_timesteps=1000)
lure.CosineNoiseScheduler(max_beta=0.999, s=0.008, num_timesteps=1000):

Dataset

import gymnasium as gym
import numpy as np
import torch
from torchlure.datasets import MinariEpisodeDataset, MinariTrajectoryDataset
from torchtyping import TensorType

def return_to_go(rewards: TensorType[..., "T"], gamma: float) -> TensorType[..., "T"]:
    if gamma == 1.0:
        return rewards.flip(-1).cumsum(-1).flip(-1)

    seq_len = rewards.shape[-1]
    rtgs = torch.zeros_like(rewards)
    rtg = torch.zeros_like(rewards[..., 0])

    for i in range(seq_len - 1, -1, -1):
        rtg = rewards[..., i] + gamma * rtg
        rtgs[..., i] = rtg

    return rtgs


env = gym.make("Hopper-v4")
minari_dataset = MinariEpisodeDataset("Hopper-random-v0")
minari_dataset.create(env, n_episodes=100, exist_ok=True)
minari_dataset.info()
# Observation space: Box(-inf, inf, (11,), float64)
# Action space: Box(-1.0, 1.0, (3,), float32)
# Total episodes: 100
# Total steps: 2,182

traj_dataset = MinariTrajectoryDataset(minari_dataset, traj_len=20, {
    "returns": lambda ep: return_to_go(torch.tensor(ep.rewards), 0.99),
})

traj = traj_dataset[2]
traj = traj_dataset[[3, 8, 15]]
traj = traj_dataset[np.arange(16)]
traj = traj_dataset[torch.arange(16)]
traj = traj_dataset[-16:]
traj["observations"].shape, traj["actions"].shape, traj["rewards"].shape, traj[
    "terminated"
].shape, traj["truncated"].shape, traj["timesteps"].shape
# (torch.Size([16, 20, 4, 4, 16]),
#  torch.Size([16, 20]),
#  torch.Size([16, 20]),
#  torch.Size([16, 20]),
#  torch.Size([16, 20]),
#  torch.Size([16, 20]))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchlure-0.2408.1.tar.gz (67.5 kB view details)

Uploaded Source

Built Distribution

torchlure-0.2408.1-py3-none-any.whl (20.9 kB view details)

Uploaded Python 3

File details

Details for the file torchlure-0.2408.1.tar.gz.

File metadata

  • Download URL: torchlure-0.2408.1.tar.gz
  • Upload date:
  • Size: 67.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.2

File hashes

Hashes for torchlure-0.2408.1.tar.gz
Algorithm Hash digest
SHA256 170584df84dc62c6c0e03068bc4ee161ae2bcefc73801198af23c243bbb0bd64
MD5 f4b36fa2e3ffda9ace0d4590d2aaa8e7
BLAKE2b-256 8b63f3d431ab2da9e3a301187308b6fdc683f3cde728e885bf0fc0d9a0965a0e

See more details on using hashes here.

File details

Details for the file torchlure-0.2408.1-py3-none-any.whl.

File metadata

  • Download URL: torchlure-0.2408.1-py3-none-any.whl
  • Upload date:
  • Size: 20.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.2

File hashes

Hashes for torchlure-0.2408.1-py3-none-any.whl
Algorithm Hash digest
SHA256 996e567c260e39a4a3abd1e7adacdab7eff41d04d58bbf21f899e12475669d69
MD5 d1dd25958971a1512b6d09770b5e3b7a
BLAKE2b-256 cce53dfbdbe3226cce16d11d5b3919d4b6d4f2575f3263a914a9c162611ec111

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page