Skip to main content

No project description provided

Project description

Torch Lure

Chandelure

Installations

pip install torchlure

Usage

import torchlure as lure

# Optimizers
lure.SophiaG(lr=1e-3, weight_decay=0.2)

# Functions
lure.tanh_exp(x)
lure.TanhExp()

lure.quantile_loss(y_pred, y_target, quantile=0.5)
lure.QuantileLoss(quantile=0.5)

lure.RMSNrom(dim=256, eps=1e-6)

# Noise Scheduler
lure.LinearNoiseScheduler(beta=1e-4, beta_end=0.02, num_timesteps=1000)
lure.CosineNoiseScheduler(max_beta=0.999, s=0.008, num_timesteps=1000):


lure.ReLUKAN(width=[11, 16, 16, 2], grid=5, k=3)

lure.create_relukan_network(
    input_dim=11,
    output_dim=2,
    hidden_dim=32,
    num_layers=3,
    grid=5,
    k=3,
)
import torchlure as lure

# Optimizers
lure.SophiaG(lr=1e-3, weight_decay=0.2)

# Functions
lure.tanh_exp(x)
lure.TanhExp()

lure.quantile_loss(y_pred, y_target, quantile=0.5)
lure.QuantileLoss(quantile=0.5)

lure.RMSNrom(dim=256, eps=1e-6)

# Noise Scheduler
lure.LinearNoiseScheduler(beta=1e-4, beta_end=0.02, num_timesteps=1000)
lure.CosineNoiseScheduler(max_beta=0.999, s=0.008, num_timesteps=1000):

Dataset

import gymnasium as gym
import numpy as np
import torch
from torchlure.datasets import MinariEpisodeDataset, MinariTrajectoryDataset
from torchtyping import TensorType

def return_to_go(rewards: TensorType[..., "T"], gamma: float) -> TensorType[..., "T"]:
    if gamma == 1.0:
        return rewards.flip(-1).cumsum(-1).flip(-1)

    seq_len = rewards.shape[-1]
    rtgs = torch.zeros_like(rewards)
    rtg = torch.zeros_like(rewards[..., 0])

    for i in range(seq_len - 1, -1, -1):
        rtg = rewards[..., i] + gamma * rtg
        rtgs[..., i] = rtg

    return rtgs


env = gym.make("Hopper-v4")
minari_dataset = MinariEpisodeDataset("Hopper-random-v0")
minari_dataset.create(env, n_episodes=100, exist_ok=True)
minari_dataset.info()
# Observation space: Box(-inf, inf, (11,), float64)
# Action space: Box(-1.0, 1.0, (3,), float32)
# Total episodes: 100
# Total steps: 2,182

traj_dataset = MinariTrajectoryDataset(minari_dataset, traj_len=20, {
    "returns": lambda ep: return_to_go(torch.tensor(ep.rewards), 0.99),
})

traj = traj_dataset[2]
traj = traj_dataset[[3, 8, 15]]
traj = traj_dataset[np.arange(16)]
traj = traj_dataset[torch.arange(16)]
traj = traj_dataset[-16:]
traj["observations"].shape, traj["actions"].shape, traj["rewards"].shape, traj[
    "terminated"
].shape, traj["truncated"].shape, traj["timesteps"].shape
# (torch.Size([16, 20, 4, 4, 16]),
#  torch.Size([16, 20]),
#  torch.Size([16, 20]),
#  torch.Size([16, 20]),
#  torch.Size([16, 20]),
#  torch.Size([16, 20]))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchlure-0.2408.3.tar.gz (67.5 kB view details)

Uploaded Source

Built Distribution

torchlure-0.2408.3-py3-none-any.whl (20.9 kB view details)

Uploaded Python 3

File details

Details for the file torchlure-0.2408.3.tar.gz.

File metadata

  • Download URL: torchlure-0.2408.3.tar.gz
  • Upload date:
  • Size: 67.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.2

File hashes

Hashes for torchlure-0.2408.3.tar.gz
Algorithm Hash digest
SHA256 fe0808981a5000fa5a6d3163359291423d41af07df4805027d48350a999d2bfe
MD5 e68a1917573b36196c992c358bda894e
BLAKE2b-256 6043c930b0178279d86247824eb5acd64c7cdfb930f59a6aec4b79513ca263bb

See more details on using hashes here.

File details

Details for the file torchlure-0.2408.3-py3-none-any.whl.

File metadata

  • Download URL: torchlure-0.2408.3-py3-none-any.whl
  • Upload date:
  • Size: 20.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.2

File hashes

Hashes for torchlure-0.2408.3-py3-none-any.whl
Algorithm Hash digest
SHA256 c1473548cbf86199ad39b0d23e94dcbaa5498cac1f71fecb3f8ba2f2e6b836c8
MD5 ac47a03435d1ce5d56fc282af3c0621e
BLAKE2b-256 e84e2c08f891aab7abc85c6d091cf4a8a9bd8f6c1dd591fd20588765d7a42ee1

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page