Skip to main content

Torchmanager Implementation for Diffusion Model (v1.0.1)

Project description

Torchmanager Diffusion Models Plug-in

The torchmanager implementation for diffusion models.

Pre-requisites

Installation

  • PyPi: pip install torchmanager-diffusion

DDPM Manager Usage

Train DDPM

Direct compile DDPMManager with a model, a beta space, and a number of time steps. Then, use fit method to train the model.

import diffusion
from diffusion import DDPMManager
from torchmanager import callbacks, data, losses

# initialize dataset
dataset: data.Dataset = ...

# initialize model, beta_space, and time_steps
model: torch.nn.Module = ...
beta_space: diffusion.scheduling.BetaSpace = ...
time_steps: int = ...

# initialize optimizer and loss function
optimizer: torch.optim.Optimizer = ...
loss_fn: losses.Loss = ...

# compile the ddpm manager
manager = DDPMManager(model, beta_space, time_steps, optimizer=optimizer, loss_fn=loss_fn)

# initialize callbacks
callback_list: list[callbacks.Callback] = ...

# train the model
trained_model = manager.fit(dataset, epochs=..., callbacks=callback_list)

Evaluate DDPM

Add necessary metrics and use test method with sampling_images as True to evaluate the trained model.

import torch
from diffusion import DDPMManager
from torchmanager import data, metrics
from torchvision import models

# load manager from checkpoints
manager = DDPMManager.from_checkpoint(...)
assert isinstance(manager, DDPMManager), "manager is not a DDPMManager."

# initialize dataset
testing_dataset: data.Dataset = ...

# add neccessary metrics
inception = models.inception_v3(pretrained=True)
inception.fc = torch.nn.Identity()  # type: ignore
inception.eval()
fid = metrics.FID(inception)
manager.metrics.update({"FID": fid})

# evaluate the model
summary = manager.test(testing_dataset, sampling_images=True)

Customize Diffusion Algorithm

Inherit DiffusionManager and implement abstract methods forward_diffusion and sampling_step to customize the diffusion algorithm.

from diffusion import DiffusionManager

class CustomizedManager(DiffusionManager):
    def forward_diffusion(self, data: Any, condition: Optional[torch.Tensor] = None, t: Optional[torch.Tensor] = None) -> tuple[Any, torch.Tensor]:
        ...

    def sampling_step(self, data: DiffusionData, i: int, /, *, return_noise: bool = False) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
        ...

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchmanager_diffusion-1.0.1.tar.gz (23.3 kB view details)

Uploaded Source

Built Distribution

torchmanager_diffusion-1.0.1-py3-none-any.whl (33.0 kB view details)

Uploaded Python 3

File details

Details for the file torchmanager_diffusion-1.0.1.tar.gz.

File metadata

File hashes

Hashes for torchmanager_diffusion-1.0.1.tar.gz
Algorithm Hash digest
SHA256 bdaa6e8b06cfda6249d1cda263fb3b7cd7be0fdd44022228fbd54e069c1411ef
MD5 e89403b2156a75adbe2950be3ea8d040
BLAKE2b-256 104e19ad108e6568067a12677429ce9593df79b4a8e734e2ec034b5d5d34bc21

See more details on using hashes here.

File details

Details for the file torchmanager_diffusion-1.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for torchmanager_diffusion-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 faaabbbbef7fae8061b268d92b28096e766e751269fa92232828386292742e3c
MD5 7f1bf9e7f3a81103d6c039c51e525704
BLAKE2b-256 c838038e7ddc49513e1bcd5d6722b8d264233276001c590352ee16e0407aa855

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page