Skip to main content

Torchmanager Implementation for Diffusion Model (v1.0.2)

Project description

Torchmanager Diffusion Models Plug-in

The torchmanager implementation for diffusion models.

Pre-requisites

Installation

  • PyPi: pip install torchmanager-diffusion

DDPM Manager Usage

Train DDPM

Direct compile DDPMManager with a model, a beta space, and a number of time steps. Then, use fit method to train the model.

import diffusion
from diffusion import DDPMManager
from torchmanager import callbacks, data, losses

# initialize dataset
dataset: data.Dataset = ...

# initialize model, beta_space, and time_steps
model: torch.nn.Module = ...
beta_space: diffusion.scheduling.BetaSpace = ...
time_steps: int = ...

# initialize optimizer and loss function
optimizer: torch.optim.Optimizer = ...
loss_fn: losses.Loss = ...

# compile the ddpm manager
manager = DDPMManager(model, beta_space, time_steps, optimizer=optimizer, loss_fn=loss_fn)

# initialize callbacks
callback_list: list[callbacks.Callback] = ...

# train the model
trained_model = manager.fit(dataset, epochs=..., callbacks=callback_list)

Evaluate DDPM

Add necessary metrics and use test method with sampling_images as True to evaluate the trained model.

import torch
from diffusion import DDPMManager
from torchmanager import data, metrics
from torchvision import models

# load manager from checkpoints
manager = DDPMManager.from_checkpoint(...)
assert isinstance(manager, DDPMManager), "manager is not a DDPMManager."

# initialize dataset
testing_dataset: data.Dataset = ...

# add neccessary metrics
inception = models.inception_v3(pretrained=True)
inception.fc = torch.nn.Identity()  # type: ignore
inception.eval()
fid = metrics.FID(inception)
manager.metrics.update({"FID": fid})

# evaluate the model
summary = manager.test(testing_dataset, sampling_images=True)

Customize Diffusion Algorithm

Inherit DiffusionManager and implement abstract methods forward_diffusion and sampling_step to customize the diffusion algorithm.

from diffusion import DiffusionManager

class CustomizedManager(DiffusionManager):
    def forward_diffusion(self, data: Any, condition: Optional[torch.Tensor] = None, t: Optional[torch.Tensor] = None) -> tuple[Any, torch.Tensor]:
        ...

    def sampling_step(self, data: DiffusionData, i: int, /, *, return_noise: bool = False) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
        ...

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchmanager_diffusion-1.0.2.tar.gz (23.3 kB view details)

Uploaded Source

Built Distribution

torchmanager_diffusion-1.0.2-py3-none-any.whl (33.0 kB view details)

Uploaded Python 3

File details

Details for the file torchmanager_diffusion-1.0.2.tar.gz.

File metadata

File hashes

Hashes for torchmanager_diffusion-1.0.2.tar.gz
Algorithm Hash digest
SHA256 6d5aca51543bf4d8b19a67e8c72ef58f11049609f1b0ddd05dc29f1a6e7ec3f1
MD5 4acdd798c5ffb13ac60676bc700d30a7
BLAKE2b-256 c240544b2a51cbabe778c5d9c1273a48d689e593ca7fd708b474dfef1b4f5775

See more details on using hashes here.

File details

Details for the file torchmanager_diffusion-1.0.2-py3-none-any.whl.

File metadata

File hashes

Hashes for torchmanager_diffusion-1.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 729b7da04c68ef8849516ded26b6539efeba77d9c0831d31a271700f9e1d731d
MD5 140abdf936b89392d683e1acafa992a8
BLAKE2b-256 1eb47d13f48e5f502a833d57b61e5bdffe25c053e70be72acb4e4ad82136491a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page