Skip to main content

Torchmanager Implementation for Diffusion Model (v1.0.3)

Project description

Torchmanager Diffusion Models Plug-in

The torchmanager implementation for diffusion models.

Pre-requisites

Installation

  • PyPi: pip install torchmanager-diffusion

DDPM Manager Usage

Train DDPM

Direct compile DDPMManager with a model, a beta space, and a number of time steps. Then, use fit method to train the model.

import diffusion
from diffusion import DDPMManager
from torchmanager import callbacks, data, losses

# initialize dataset
dataset: data.Dataset = ...

# initialize model, beta_space, and time_steps
model: torch.nn.Module = ...
beta_space: diffusion.scheduling.BetaSpace = ...
time_steps: int = ...

# initialize optimizer and loss function
optimizer: torch.optim.Optimizer = ...
loss_fn: losses.Loss = ...

# compile the ddpm manager
manager = DDPMManager(model, beta_space, time_steps, optimizer=optimizer, loss_fn=loss_fn)

# initialize callbacks
callback_list: list[callbacks.Callback] = ...

# train the model
trained_model = manager.fit(dataset, epochs=..., callbacks=callback_list)

Evaluate DDPM

Add necessary metrics and use test method with sampling_images as True to evaluate the trained model.

import torch
from diffusion import DDPMManager
from torchmanager import data, metrics
from torchvision import models

# load manager from checkpoints
manager = DDPMManager.from_checkpoint(...)
assert isinstance(manager, DDPMManager), "manager is not a DDPMManager."

# initialize dataset
testing_dataset: data.Dataset = ...

# add neccessary metrics
inception = models.inception_v3(pretrained=True)
inception.fc = torch.nn.Identity()  # type: ignore
inception.eval()
fid = metrics.FID(inception)
manager.metrics.update({"FID": fid})

# evaluate the model
summary = manager.test(testing_dataset, sampling_images=True)

Customize Diffusion Algorithm

Inherit DiffusionManager and implement abstract methods forward_diffusion and sampling_step to customize the diffusion algorithm.

from diffusion import DiffusionManager

class CustomizedManager(DiffusionManager):
    def forward_diffusion(self, data: Any, condition: Optional[torch.Tensor] = None, t: Optional[torch.Tensor] = None) -> tuple[Any, torch.Tensor]:
        ...

    def sampling_step(self, data: DiffusionData, i: int, /, *, return_noise: bool = False) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
        ...

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchmanager_diffusion-1.0.3.tar.gz (23.5 kB view details)

Uploaded Source

Built Distribution

torchmanager_diffusion-1.0.3-py3-none-any.whl (33.0 kB view details)

Uploaded Python 3

File details

Details for the file torchmanager_diffusion-1.0.3.tar.gz.

File metadata

File hashes

Hashes for torchmanager_diffusion-1.0.3.tar.gz
Algorithm Hash digest
SHA256 bed1696468c8930d33335ef1be5c83fedb5e2343d4ab53277633c6d3c0963b46
MD5 328fad2faee88c0afb8df624004a2767
BLAKE2b-256 555a6993526ce3d13b518644ff470ce051784ce209300def5786cc17d67aea96

See more details on using hashes here.

File details

Details for the file torchmanager_diffusion-1.0.3-py3-none-any.whl.

File metadata

File hashes

Hashes for torchmanager_diffusion-1.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 497027565628176c151e1ed683404f3dfba2d8af26801dbe8601dd2a90eadda3
MD5 acccf34e66bc2c3e85af61fd88e948f3
BLAKE2b-256 0e01098abf6fe7959351f242b630921900baac179757d918fea33724a871862a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page