Skip to main content

Torchmanager Implementation for Diffusion Model (v1.1.1)

Project description

Torchmanager Diffusion Models Plug-in

The torchmanager implementation for diffusion models.

Pre-requisites

Installation

  • PyPi: pip install torchmanager-diffusion

DDPM Manager Usage

Train DDPM

Direct compile DDPMManager with a model, a beta space, and a number of time steps. Then, use fit method to train the model.

import diffusion
from diffusion import DDPMManager
from torchmanager import callbacks, data, losses

# initialize dataset
dataset: data.Dataset = ...

# initialize model, beta_space, and time_steps
model: torch.nn.Module = ...
beta_space: diffusion.scheduling.BetaSpace = ...
time_steps: int = ...

# initialize optimizer and loss function
optimizer: torch.optim.Optimizer = ...
loss_fn: losses.Loss = ...

# compile the ddpm manager
manager = DDPMManager(model, beta_space, time_steps, optimizer=optimizer, loss_fn=loss_fn)

# initialize callbacks
callback_list: list[callbacks.Callback] = ...

# train the model
trained_model = manager.fit(dataset, epochs=..., callbacks=callback_list)

Evaluate DDPM

Add necessary metrics and use test method with sampling_images as True to evaluate the trained model.

import torch
from diffusion import DDPMManager
from torchmanager import data, metrics
from torchvision import models

# load manager from checkpoints
manager = DDPMManager.from_checkpoint(...)
assert isinstance(manager, DDPMManager), "manager is not a DDPMManager."

# initialize dataset
testing_dataset: data.Dataset = ...

# add neccessary metrics
inception = models.inception_v3(pretrained=True)
inception.fc = torch.nn.Identity()  # type: ignore
inception.eval()
fid = metrics.FID(inception)
manager.metrics.update({"FID": fid})

# evaluate the model
summary = manager.test(testing_dataset, sampling_images=True)

Customize Diffusion Algorithm

Inherit DiffusionManager and implement abstract methods forward_diffusion and sampling_step to customize the diffusion algorithm.

from diffusion import DiffusionManager

class CustomizedManager(DiffusionManager):
    def forward_diffusion(self, data: Any, condition: Optional[torch.Tensor] = None, t: Optional[torch.Tensor] = None) -> tuple[Any, torch.Tensor]:
        ...

    def sampling_step(self, data: DiffusionData, i: int, /, *, return_noise: bool = False) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
        ...

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchmanager_diffusion-1.1.1.tar.gz (28.7 kB view details)

Uploaded Source

Built Distribution

torchmanager_diffusion-1.1.1-py3-none-any.whl (43.9 kB view details)

Uploaded Python 3

File details

Details for the file torchmanager_diffusion-1.1.1.tar.gz.

File metadata

File hashes

Hashes for torchmanager_diffusion-1.1.1.tar.gz
Algorithm Hash digest
SHA256 c5153fb7247f37e183c37f47b13e444cfa38b41b61faff3e95a65d2c93ed0540
MD5 3ebcf573df297debd1607684d4250823
BLAKE2b-256 3dc3a240bf7bb25966b9d3aa4b5db7042a43ca5a614798d20972e1fdc4167d69

See more details on using hashes here.

File details

Details for the file torchmanager_diffusion-1.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for torchmanager_diffusion-1.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 687a468f6bd1874d0a33f61ee6805555b74b3d42407622229295992b1ca4879c
MD5 7e52d1be941371b87ca3a8114ff32f27
BLAKE2b-256 ed9112e85baf2c1d629e46168dd4db47060ccc1e83eaf167794ca15c4befba39

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page