Skip to main content

PyTorch Training Manager v1.3

Project description

torchmanager

A generic deep learning training/testing framework for PyTorch

DOI

To use this framework, simply initialize a Manager object. The Manager class provides a generic training/testing loop for PyTorch models. It also provides some useful callbacks to use during training/testing.

Pre-request

  • Python 3.9+
  • PyTorch
  • Packaging
  • tqdm
  • PyYAML (Optional for yaml configs)
  • scipy (Optional for FID metric)
  • tensorboard (Optional for tensorboard recording)

Installation

  • PyPi: pip install torchmanager
  • Conda: conda install torchmanager

Start from Configurations

The Configs class is designed to be inherited to define necessary configurations. It also provides a method to get configurations from terminal arguments.

from torchmanager.configs import Configs as _Configs

# define necessary configurations
class Configs(_Configs):
    epochs: int
    lr: float
    ...

    def get_arguments(parser: Union[argparse.ArgumentParser, argparse._ArgumentGroup] = argparse.ArgumentParser()) -> Union[argparse.ArgumentParser, argparse._ArgumentGroup]:
        '''Add arguments to argument parser'''
        ...

    def show_settings(self) -> None:
        ...

# get configs from terminal arguments
configs = Configs.from_arguments()

Torchmanager Dataset

The data.Dataset class is designed to be inherited to define a dataset. It is a combination of torch.utils.data.Dataset and torch.utils.data.DataLoader with easier usage.

from torchmanager.data import Dataset

# define dataset
class CustomDataset(Dataset):
    def __init__(self, ...):
        ...

    @property
    def unbatched_len(self) -> int:
        ...

    def __getitem__(self, index: int) -> Tuple[torch.Tensor, torch.Tensor]:
        ...

# initialize datasets
training_dataset = CustomDataset(...)
val_dataset = CustomDataset(...)
testing_dataset = CustomDataset(...)

The Manager

The Manager class is the core of the framework. It provides a generic training/testing loop for PyTorch models. The Manager class is designed to be inherited to manage the training/testing algorithm. There are also some useful callbacks to use during training/testing.

  1. Initialize the manager with target model, optimizer, loss function, and metrics:
import torch, torchmanager

# define model
class PytorchModel(torch.nn.Module):
    ...

# initialize model, optimizer, loss function, and metrics
model = PytorchModel(...)
optimizer = torch.optim.SGD(model.parameters(), lr=configs.lr)
loss_fn = torchmanager.losses.CrossEntropy()
metrics = {'accuracy': torchmanager.metrics.SparseCategoricalAccuracy()}

# initialize manager
manager = torchmanager.Manager(model, optimizer, loss_fn=loss_fn, metrics=metrics)
  • Multiple losses can be used by passing a dictionary to loss_fn:
loss_fn = {
    'loss1': torchmanager.losses.CrossEntropy(),
    'loss2': torchmanager.losses.Dice(),
    ...
}
  1. Train the model with `fit`` method:
show_verbose: bool = ... # show progress bar information during training/testing
manager.fit(training_dataset, epochs=configs.epochs, val_dataset=val_dataset, show_verbose=show_verbose)
  • There are also some other callbacks to use:
tensorboard_callback = torchmanager.callbacks.TensorBoard('logs') # tensorboard dependency required
last_ckpt_callback = torchmanager.callbacks.LastCheckpoint(manager, 'last.model')
model = manager.fit(..., callbacks_list=[tensorboard_callback, last_ckpt_callback])
  1. Test the model with test method:
manager.test(testing_dataset, show_verbose=show_verbose)
  1. Save the final trained PyTorch model:
torch.save(model, "model.pth") # The saved PyTorch model can be loaded individually without using torchmanager

Device selection during training/testing

Torchmanager automatically detects available devices to use during training/testing. GPU/MPS will be used in first priority if available. To specify other device to use, simply pass the device to the fit method for training and test method for testing:

  1. Multi-GPU training/testing:
# train on multiple GPUs
model = manager.fit(..., use_multi_gpus=True)

# test on multiple GPUs
manager.test(..., use_multi_gpus=True)
  1. Use only specified GPUs for training/testing:
# specify devices to use
gpus: Union[list[torch.device], torch.device] = ... # Notice: device id must be specified

# train on specified multiple GPUs
model = manager.fit(..., use_multi_gpus=True, devices=gpus)

# test on specified multiple GPUs
manager.test(..., use_multi_gpus=True, devices=gpus)

Customize training/testing algorithm

The Manager class is designed to be inherited to manage the training/testing algorithm. To customize the training/testing algorithm, simply inherit the Manager class and override the train_step and test_step methods.

class CustomManager(Manager):
    ...

    def train_step(x_train: torch.Tensor, y_train: torch.Tensor) -> Dict[str, float]:
        ...

    def test_step(x_test: torch.Tensor, y_test: torch.Tensor) -> Dict[str, float]:
        ...

The saved experiment information

The Experiment class is designed to be used as a single callback to save experiment information. It is a combination of torchmanager.callbacks.TensorBoard, torchmanager.callbacks.LastCheckpoint, and torchmanager.callbacks.BestCheckpoint with easier usage.

...

exp_callback = torchmanager.callbacks.Experiment('test.exp', manager) # tensorboard dependency required
model = manager.fit(..., callbacks_list=[exp_callback])

The information, including full training logs and checkpoints, will be saved in the following structure:

experiments
└── <experiment name>.exp
    ├── checkpoints
    │   ├── best-<metric name>.model
    │   └── last.model
    └── data
    │   └── <TensorBoard data file>
    ├── <experiment name>.cfg
    └── <experiment name>.log

Please cite this work if you find it useful

@software{he_2023_10381715,
  author       = {He, Qisheng and
                  Dong, Ming},
  title        = {{TorchManager: A generic deep learning 
                   training/testing framework for PyTorch}},
  month        = dec,
  year         = 2023,
  publisher    = {Zenodo},
  version      = 1,
  doi          = {10.5281/zenodo.10381715},
  url          = {https://doi.org/10.5281/zenodo.10381715}
}

Also checkout our projects implemented with torchmanager

  • MAG-MS/MAGNET - Modality-Agnostic Learning for Medical Image Segmentation Using Multi-modality Self-distillation
  • tlt - Transferring Lottery Tickets in Computer Vision Models: a Dynamic Pruning Approach

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchmanager-1.3.tar.gz (46.9 kB view hashes)

Uploaded Source

Built Distribution

torchmanager-1.3-py3-none-any.whl (71.1 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page