Skip to main content

No project description provided

Project description

torchmaxflow: Max-flow/Min-cut in PyTorch for 2D images and 3D volumes

Pytorch-based implementation of Max-flow/Min-cut based on the following paper:

  • Boykov, Yuri, and Vladimir Kolmogorov. "An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision." IEEE transactions on pattern analysis and machine intelligence 26.9 (2004): 1124-1137.

This repository depends on the code for maxflow from OpenCV v2.4: https://github.com/opencv/opencv/blob/2.4/modules/imgproc/src/gcgraph.hpp, which has been included. It has same license, i.e. BSD-3 Clause, as torchmaxflow.

Citation

If you use this code in your research, then please consider citing:

Asad, Muhammad, Lucas Fidon, and Tom Vercauteren. "ECONet: Efficient Convolutional Online Likelihood Network for Scribble-based Interactive Segmentation." Medical Imaging with Deep Learning (MIDL), 2022.

Installation instructions

pip install torchmaxflow

or

# Clone and install from github repo

$ git clone https://github.com/masadcv/torchmaxflow
$ cd torchmaxflow
$ pip install -r requirements.txt
$ python setup.py install

Example outputs

Maxflow2d

./figures/torchmaxflow_maxflow2d.png

Interactive maxflow2d

./figures/torchmaxflow_intmaxflow2d.png

figures/figure_torchmaxflow.png

Example usage

The following demonstrates a simple example showing torchmaxflow usage:

image = np.asarray(Image.open('data/image2d.png').convert('L'), np.float32)
image = torch.from_numpy(image).unsqueeze(0).unsqueeze(0)

prob = np.asarray(Image.open('data/image2d_prob.png'), np.float32)
prob = torch.from_numpy(prob).unsqueeze(0)

lamda = 20.0
sigma = 10.0

post_proc_label = torchmaxflow.maxflow(image, prob, lamda, sigma)

For more usage examples see:

2D and 3D maxflow and interactive maxflow examples: demo_maxflow.py

References

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchmaxflow-0.0.3rc1.tar.gz (12.1 kB view details)

Uploaded Source

File details

Details for the file torchmaxflow-0.0.3rc1.tar.gz.

File metadata

  • Download URL: torchmaxflow-0.0.3rc1.tar.gz
  • Upload date:
  • Size: 12.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for torchmaxflow-0.0.3rc1.tar.gz
Algorithm Hash digest
SHA256 7b30139a661d9c690d67905d9a582c06a0e546b7e978822ee55868ec58148639
MD5 f6cb5da1315bfdb3dbcc23cec0f26a59
BLAKE2b-256 78e9b77090062ed2515a47e4d395ca8948b3a92581cf738c694099a40776fb1a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page