Skip to main content

No project description provided

Project description

torchmaxflow: Max-flow/Min-cut in PyTorch for 2D images and 3D volumes

Pytorch-based implementation of Max-flow/Min-cut based on the following paper:

  • Boykov, Yuri, and Vladimir Kolmogorov. "An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision." IEEE transactions on pattern analysis and machine intelligence 26.9 (2004): 1124-1137.

This repository depends on the code for maxflow from OpenCV v2.4: https://github.com/opencv/opencv/blob/2.4/modules/imgproc/src/gcgraph.hpp, which has been included. It has same license, i.e. BSD-3 Clause, as torchmaxflow.

Citation

If you use this code in your research, then please consider citing:

Asad, Muhammad, Lucas Fidon, and Tom Vercauteren. "ECONet: Efficient Convolutional Online Likelihood Network for Scribble-based Interactive Segmentation." Medical Imaging with Deep Learning (MIDL), 2022.

Installation instructions

pip install torchmaxflow

or

# Clone and install from github repo

$ git clone https://github.com/masadcv/torchmaxflow
$ cd torchmaxflow
$ pip install -r requirements.txt
$ python setup.py install

Example outputs

Maxflow2d

./figures/torchmaxflow_maxflow2d.png

Interactive maxflow2d

./figures/torchmaxflow_intmaxflow2d.png

figures/figure_torchmaxflow.png

Example usage

The following demonstrates a simple example showing torchmaxflow usage:

image = np.asarray(Image.open('data/image2d.png').convert('L'), np.float32)
image = torch.from_numpy(image).unsqueeze(0).unsqueeze(0)

prob = np.asarray(Image.open('data/image2d_prob.png'), np.float32)
prob = torch.from_numpy(prob).unsqueeze(0)

lamda = 20.0
sigma = 10.0

post_proc_label = torchmaxflow.maxflow(image, prob, lamda, sigma)

For more usage examples see:

2D and 3D maxflow and interactive maxflow examples: demo_maxflow.py

References

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torchmaxflow-0.0.3rc2-cp39-cp39-win_amd64.whl (84.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

torchmaxflow-0.0.3rc2-cp39-cp39-macosx_10_15_x86_64.whl (71.8 kB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

torchmaxflow-0.0.3rc2-cp38-cp38-win_amd64.whl (84.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

torchmaxflow-0.0.3rc2-cp38-cp38-macosx_10_14_x86_64.whl (71.3 kB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

torchmaxflow-0.0.3rc2-cp37-cp37m-win_amd64.whl (84.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

torchmaxflow-0.0.3rc2-cp37-cp37m-macosx_10_14_x86_64.whl (71.0 kB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

torchmaxflow-0.0.3rc2-cp36-cp36m-win_amd64.whl (84.8 kB view details)

Uploaded CPython 3.6m Windows x86-64

torchmaxflow-0.0.3rc2-cp36-cp36m-macosx_10_14_x86_64.whl (71.0 kB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file torchmaxflow-0.0.3rc2-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for torchmaxflow-0.0.3rc2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 bdaac76389964fbd7df65fdd39229869103aa2c3d93748e1ca83eda88cca5bbd
MD5 bcccbea3e5b0cc754769a67828d2c162
BLAKE2b-256 ed6d537afb79fc38151491bbfbc2788120e0aa0c8cd2bba4d4911efd1e391557

See more details on using hashes here.

File details

Details for the file torchmaxflow-0.0.3rc2-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for torchmaxflow-0.0.3rc2-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 ed9d3c35f0ed6ee7385ba9660e14da2c615b7eab2e09be281fa8491333db8af4
MD5 29f061f7735a28a6289d622343977cf8
BLAKE2b-256 e7349516b2cfa6d18096492ef902101bb6b8b81c805648c8b02208c7688ea26f

See more details on using hashes here.

File details

Details for the file torchmaxflow-0.0.3rc2-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for torchmaxflow-0.0.3rc2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1a9e8ef634ec1571ec7ba9bbf52133cf757fedf07e57689e20834d5ed96e3bf8
MD5 93a93f76711240e1d843a45ff78aeb91
BLAKE2b-256 7f8ffd4f0ec408515a1b31a7c8dc5207d6115005762e069091043a561cb2974a

See more details on using hashes here.

File details

Details for the file torchmaxflow-0.0.3rc2-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for torchmaxflow-0.0.3rc2-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 177168d0404616387640cee0cb0ebc3c338ad96ad6ec72c30d99a4c96b34aebf
MD5 61a4f639805d51628e61b7c02f8c3fa9
BLAKE2b-256 9bb0ec929e60f5f531f5987bc1930effa6cb4e1ad07064a86ec73765db7a31c6

See more details on using hashes here.

File details

Details for the file torchmaxflow-0.0.3rc2-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for torchmaxflow-0.0.3rc2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 8c1e142cb2d3a50fae94cc5681cf91ce71035a11df0bde6ba972f6710e875618
MD5 274da92dd122b5fcc4bd6e218bb12b4c
BLAKE2b-256 c07c2a45eaf241286a0d0371961ce2cc4a95a8b16e0665ceaecd362f7cfea2ef

See more details on using hashes here.

File details

Details for the file torchmaxflow-0.0.3rc2-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for torchmaxflow-0.0.3rc2-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d2453408b803a0494e1cba37bdb33ee91768fd236a725bc6f100fe9c38d34f98
MD5 da0e0a261bed1fcb9373a237588589c2
BLAKE2b-256 4238f57be6969babe891b6334a7407507b6669e8c6ef3c3df3fb1cd8367651f7

See more details on using hashes here.

File details

Details for the file torchmaxflow-0.0.3rc2-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for torchmaxflow-0.0.3rc2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 42d86793358e2d13f63478d1d13a42ce6bdb1fbd5daa181a27328507cac7c2fb
MD5 d2db62f6b49a90de106d006cbf4d5076
BLAKE2b-256 15950e0b3165bb6ed21350e9ef2c1578aad7022a2c04d11b25c57b62cdd477dd

See more details on using hashes here.

File details

Details for the file torchmaxflow-0.0.3rc2-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for torchmaxflow-0.0.3rc2-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 16c1fb3c3c9ff4d2ebbe050e6a2c1b96289de2cfc93ffa0515a1673259cbe3c2
MD5 5f0a386eb39720f56bc283574c5e0932
BLAKE2b-256 68884ff9e44073ab9186d7eebb1a26cc59ba4da6b6c81829ef3f64878d2589ba

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page