Skip to main content

A library for Meta-Learning and Few-Shot Learning with PyTorch

Project description



A library for few-shot learning & meta-learning in PyTorch. torchmetal contains popular meta-learning benchmarks, fully compatible with both torchvision and PyTorch's DataLoader.


  • A unified interface for both few-shot classification and regression problems, to allow easy benchmarking on multiple problems and reproducibility.
  • Helper functions for some popular problems, with default arguments from the literature.
  • An thin extension of PyTorch's Module, called MetaModule, that simplifies the creation of certain meta-learning models (e.g. gradient based meta-learning methods). See the MAML example for an example using MetaModule.

Datasets available


You can install torchmetal either using Python's package manager pip, or from source. To avoid any conflict with your existing Python setup, it is suggested to work in a virtual environment with virtualenv. To install virtualenv:

pip install --upgrade virtualenv
virtualenv venv
source venv/bin/activate

Using pip

This is the recommended way to install torchmetal:

pip install torchmetal

From source

You can also install torchmetal from source. This is recommended if you want to contribute to torchmetal.

git clone
cd pytorch-meta
python install


Minimal example

This minimal example below shows how to create a dataloader for the 5-shot 5-way Omniglot dataset with torchmetal. The dataloader loads a batch of randomly generated tasks, and all the samples are concatenated into a single tensor. For more examples, check the examples folder.

from torchmetal.datasets.helpers import omniglot
from import BatchMetaDataLoader

dataset = omniglot("data", ways=5, shots=5, test_shots=15, meta_train=True, download=True)
dataloader = BatchMetaDataLoader(dataset, batch_size=16, num_workers=4)

for batch in dataloader:
    train_inputs, train_targets = batch["train"]
    print('Train inputs shape: {0}'.format(train_inputs.shape))    # (16, 25, 1, 28, 28)
    print('Train targets shape: {0}'.format(train_targets.shape))  # (16, 25)

    test_inputs, test_targets = batch["test"]
    print('Test inputs shape: {0}'.format(test_inputs.shape))      # (16, 75, 1, 28, 28)
    print('Test targets shape: {0}'.format(test_targets.shape))    # (16, 75)

Advanced example

Helper functions are only available for some of the datasets available. However, all of them are available through the unified interface provided by torchmetal. The variable dataset defined above is equivalent to the following

from torchmetal.datasets import Omniglot
from torchmetal.transforms import Categorical, ClassSplitter, Rotation
from torchvision.transforms import Compose, Resize, ToTensor
from import BatchMetaDataLoader

dataset = Omniglot("data",
                   # Number of ways
                   # Resize the images to 28x28 and converts them to PyTorch tensors (from Torchvision)
                   transform=Compose([Resize(28), ToTensor()]),
                   # Transform the labels to integers (e.g. ("Glagolitic/character01", "Sanskrit/character14", ...) to (0, 1, ...))
                   # Creates new virtual classes with rotated versions of the images (from Santoro et al., 2016)
                   class_augmentations=[Rotation([90, 180, 270])],
dataset = ClassSplitter(dataset, shuffle=True, num_train_per_class=5, num_test_per_class=15)
dataloader = BatchMetaDataLoader(dataset, batch_size=16, num_workers=4)

Note that the dataloader, receiving the dataset, remains the same.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchmetal-0.1.0.tar.gz (131.8 kB view hashes)

Uploaded Source

Built Distribution

torchmetal-0.1.0-py3-none-any.whl (165.5 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page