Skip to main content

PyTorch Multimodal Library

Project description

Unit-tests Python version Downloads

TorchMultimodal (Beta Release)

Models | Example scripts | Getting started | Code overview | Installation | Contributing | License

Introduction

TorchMultimodal is a PyTorch library for training state-of-the-art multimodal multi-task models at scale, including both content understanding and generative models. TorchMultimodal contains:

  • A repository of modular and composable building blocks (fusion layers, loss functions, datasets and utilities).
  • A collection of common multimodal model classes built up from said building blocks with pretrained weights for canonical configurations.
  • A set of examples that show how to combine these building blocks with components and common infrastructure from across the PyTorch Ecosystem to replicate state-of-the-art models published in the literature. These examples should serve as baselines for ongoing research in the field, as well as a starting point for future work.

Models

TorchMultimodal contains a number of models, including

Example scripts

In addition to the above models, we provide example scripts for training, fine-tuning, and evaluation of models on popular multimodal tasks. Examples can be found under examples/ and include

Model Supported Tasks
ALBEF Retrieval Visual Question Answering
DDPM Training and Inference (notebook)
FLAVA Pretraining Fine-tuning Zero-shot
MDETR Phrase grounding Visual Question Answering
MUGEN Text-to-video retrieval Text-to-video generation
Omnivore Pre-training Evaluation

Getting started

Below we give minimal examples of how you can write a simple training or zero-shot evaluation script using components from TorchMultimodal.

FLAVA zero-shot example
import torch
from PIL import Image
from torchmultimodal.models.flava.model import flava_model
from torchmultimodal.transforms.bert_text_transform import BertTextTransform
from torchmultimodal.transforms.flava_transform import FLAVAImageTransform

# Define helper function for zero-shot prediction
def predict(zero_shot_model, image, labels):
  zero_shot_model.eval()
  with torch.no_grad():
      image = image_transform(img)["image"].unsqueeze(0)
      texts = text_transform(labels)
      _, image_features = zero_shot_model.encode_image(image, projection=True)
      _, text_features = zero_shot_model.encode_text(texts, projection=True)
      scores = image_features @ text_features.t()
      probs = torch.nn.Softmax(dim=-1)(scores)
      label = labels[torch.argmax(probs)]
      print(
          "Label probabilities: ",
          {labels[i]: probs[:, i] for i in range(len(labels))},
      )
      print(f"Predicted label: {label}")


image_transform = FLAVAImageTransform(is_train=False)
text_transform = BertTextTransform()
zero_shot_model = flava_model(pretrained=True)
img = Image.open("my_image.jpg")  # point to your own image
predict(zero_shot_model, img, ["dog", "cat", "house"])

# Example output:
# Label probabilities:  {'dog': tensor([0.80590]), 'cat': tensor([0.0971]), 'house': tensor([0.0970])}
# Predicted label: dog
MAE training example
import torch
from torch.utils.data import DataLoader
from torchmultimodal.models.masked_auto_encoder.model import vit_l_16_image_mae
from torchmultimodal.models.masked_auto_encoder.utils import (
  CosineWithWarmupAndLRScaling,
)
from torchmultimodal.modules.losses.reconstruction_loss import ReconstructionLoss
from torchmultimodal.transforms.mae_transform import ImagePretrainTransform

mae_transform = ImagePretrainTransform()
dataset = MyDatasetClass(transforms=mae_transform)  # you should define this
dataloader = DataLoader(dataset, batch_size=8)

# Instantiate model and loss
mae_model = vit_l_16_image_mae()
mae_loss = ReconstructionLoss()

# Define optimizer and lr scheduler
optimizer = torch.optim.AdamW(mae_model.parameters())
lr_scheduler = CosineWithWarmupAndLRScaling(
  optimizer, max_iters=1000, warmup_iters=100  # you should set these
)

# Train one epoch
for batch in dataloader:
  model_out = mae_model(batch["images"])
  loss = mae_loss(model_out.decoder_pred, model_out.label_patches, model_out.mask)
  loss.backward()
  optimizer.step()
  lr_scheduler.step()

Code overview

torchmultimodal/diffusion_labs

diffusion_labs contains components for building diffusion models. For more details on these components, see diffusion_labs/README.md.

torchmultimodal/models

Look here for model classes as well as any other modeling code specific to a given architecture. E.g. the directory torchmultimodal/models/blip2 contains modeling components specific to BLIP-2.

torchmultimodal/modules

Look here for common generic building blocks that can be stitched together to build a new architecture. This includes layers like codebooks, patch embeddings, or transformer encoder/decoders, losses like contrastive loss with temperature or reconstruction loss, encoders like ViT and BERT, and fusion modules like Deep Set fusion.

torchmultimodal/transforms

Look here for common data transforms from popular models, e.g. CLIP, FLAVA, and MAE.

Installation

TorchMultimodal requires Python >= 3.8. The library can be installed with or without CUDA support. The following assumes conda is installed.

Prerequisites

  1. Install conda environment

    conda create -n torch-multimodal python=\
    conda activate torch-multimodal
    
  2. Install pytorch, torchvision, and torchaudio. See PyTorch documentation.

    # Use the current CUDA version as seen [here](https://pytorch.org/get-started/locally/)
    # Select the nightly Pytorch build, Linux as the OS, and conda. Pick the most recent CUDA version.
    conda install pytorch torchvision torchaudio pytorch-cuda=\ -c pytorch-nightly -c nvidia
    
    # For CPU-only install
    conda install pytorch torchvision torchaudio cpuonly -c pytorch-nightly
    

Install from binaries

Nightly binary on Linux for Python 3.8 and 3.9 can be installed via pip wheels. For now we only support Linux platform through PyPI.

python -m pip install torchmultimodal-nightly

Building from Source

Alternatively, you can also build from our source code and run our examples:

git clone --recursive https://github.com/facebookresearch/multimodal.git multimodal
cd multimodal

pip install -e .

For developers please follow the development installation.

Contributing

We welcome any feature requests, bug reports, or pull requests from the community. See the CONTRIBUTING file for how to help out.

License

TorchMultimodal is BSD licensed, as found in the LICENSE file.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torchmultimodal_nightly-2024.2.23-py39-none-any.whl (256.5 kB view details)

Uploaded Python 3.9

torchmultimodal_nightly-2024.2.23-py38-none-any.whl (256.5 kB view details)

Uploaded Python 3.8

File details

Details for the file torchmultimodal_nightly-2024.2.23-py39-none-any.whl.

File metadata

File hashes

Hashes for torchmultimodal_nightly-2024.2.23-py39-none-any.whl
Algorithm Hash digest
SHA256 653a7bf829633ac8bbbc1b6456014e28b0b97ce31a829d397cbc14d9dc2cd281
MD5 cb5e6b58b02406593cec4a2b83f885b1
BLAKE2b-256 4ebc5bcd6f2f8ce0054dc42bae5b9d1aad4dcd85d0d0d742c0b20efa9745191f

See more details on using hashes here.

File details

Details for the file torchmultimodal_nightly-2024.2.23-py38-none-any.whl.

File metadata

File hashes

Hashes for torchmultimodal_nightly-2024.2.23-py38-none-any.whl
Algorithm Hash digest
SHA256 9c7014fe0e6373794646881a30dfbeaf7266d1ce1049177bc90e1a35af11bfdb
MD5 bc015d1602e4674898dd52721834d3a9
BLAKE2b-256 440cf48b5863c1cc860e9cd081ff500e8ecb30bfcc50709b2a14afe25e522028

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page