Skip to main content

A pytorch package for Non-negative Matrix Factorization

Project description

Non-negative Matrix Fatorization in PyTorch

build codecov Documentation Status PyPI version

PyTorch is not only a good deep learning framework, but also a fast tool when it comes to matrix operations and convolutions on large data. A great example is PyTorchWavelets.

In this package I implement NMF, PLCA and their deconvolutional variations in PyTorch based on torch.nn.Module, so the models can be moved freely among CPU/GPU devices and utilize parallel computation of cuda.

Modules

NMF

Basic NMF and NMFD module minimizing beta-divergence using multiplicative update rules. The multiplier is obtained via torch.autograd so the amount of codes is reduced and easy to maintain.

The interface is similar to sklearn.decomposition.NMF with some extra options.

  • NMF: Original NMF algorithm.
  • NMFD: 1-D deconvolutional NMF algorithm.
  • NMF2D: 2-D deconvolutional NMF algorithm.
  • NMF3D: 3-D deconvolutional NMF algorithm.

PLCA

Basic PLCA and SIPLCA module using EM algorithm to minimize KL-divergence between the target distribution and the estimated distribution.

  • PLCA: Original PLCA (Probabilistic Latent Component Analysis) algorithm.
  • SIPLCA: Shift-Invariant PLCA algorithm (similar to NMFD).
  • SIPLCA2: 2-D deconvolutional SIPLCA algorithm.
  • SIPLCA3: 3-D deconvolutional SIPLCA algorithm.

Usage

Here is a short example of decompose a spectrogram using deconvolutional NMF:

import torch
import librosa
from torchnmf.nmf import NMFD
from torchnmf.metrics import kl_div

y, sr = librosa.load(librosa.util.example_audio_file())
y = torch.from_numpy(y)
windowsize = 2048
S = torch.stft(y, windowsize, 
               window=torch.hann_window(windowsize),
               return_complex=True).abs().cuda()
S = S.unsqueeze(0)

R = 8   # number of components
T = 400 # size of convolution window

net = NMFD(S.shape, rank=R, T=T).cuda()
# run extremely fast on gpu
net.fit(S)      # fit to target matrix S
V = net()
print(kl_div(V, S))        # KL divergence to S

A more detailed version can be found here. See our documentation to find out more usage of this package.

Compare to sklearn

The barchart shows the time cost per iteration with different beta-divergence. It shows that pytorch-based NMF has a much more constant process time across different beta values, which can take advantage when beta is not 0, 1, or 2. This is because our implementation use the same computational graph regardless which beta-divergence are we minimizing. It runs even faster when computation is done on GPU. The test is conducted on a Acer E5 laptop with i5-7200U CPU and GTX 950M GPU.

Installation

pip install torchnmf

Requirements

  • PyTorch
  • tqdm

Tips

  • If you notice significant slow down when operating on CPU, please flush denormal numbers by torch.set_flush_denormal(True).

TODO

  • Support sparse matrix.
  • Regularization.
  • NNDSVD initialization.
  • 2/3-D deconvolutional module.
  • PLCA.
  • Documentation.
  • ipynb examples.
  • Refactor PLCA module.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchnmf-0.3.3.tar.gz (17.7 kB view details)

Uploaded Source

Built Distribution

torchnmf-0.3.3-py3-none-any.whl (21.6 kB view details)

Uploaded Python 3

File details

Details for the file torchnmf-0.3.3.tar.gz.

File metadata

  • Download URL: torchnmf-0.3.3.tar.gz
  • Upload date:
  • Size: 17.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for torchnmf-0.3.3.tar.gz
Algorithm Hash digest
SHA256 c016c4c6fd2cdb154638677e60f01d591aa36c25708c68b0fe4adb961a5da702
MD5 f379ab11d9582950614e1b470d673085
BLAKE2b-256 d97aea7861c8454ea51a271d1046bc02e66f6fee755008a7b6e05c645aaa6108

See more details on using hashes here.

File details

Details for the file torchnmf-0.3.3-py3-none-any.whl.

File metadata

  • Download URL: torchnmf-0.3.3-py3-none-any.whl
  • Upload date:
  • Size: 21.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for torchnmf-0.3.3-py3-none-any.whl
Algorithm Hash digest
SHA256 0ba8a9e0e50577a15d4dc0f922c876534aff7557a9910a86baee7db9f6935620
MD5 68aed5e7962dffb3da81e972ba934a6b
BLAKE2b-256 b96260d2a60590e47fbcb672212313796c73fd9450fe1fd72379a66a8066ee31

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page