Differentiable Fuzzy Logic operators for
Project description
torch-norms
t-norms in PyTorch
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
torchnorms-1.0.0.tar.gz
(5.1 kB
view details)
Built Distribution
File details
Details for the file torchnorms-1.0.0.tar.gz
.
File metadata
- Download URL: torchnorms-1.0.0.tar.gz
- Upload date:
- Size: 5.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.8.3 pkginfo/1.8.2 requests/2.13.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 400fbd2346b6bc46df0034e809b87c1e2fa56cb01e8c7213624facbe91c8ef5e |
|
MD5 | eac7f0adf4dbccd509ac083535bc63cb |
|
BLAKE2b-256 | 0187c3f8df4e258410db24131a40a0f472f90378ef62442bb5914df4122717bc |
File details
Details for the file torchnorms-1.0.0-py3-none-any.whl
.
File metadata
- Download URL: torchnorms-1.0.0-py3-none-any.whl
- Upload date:
- Size: 13.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.8.3 pkginfo/1.8.2 requests/2.13.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8d10cec8ec818289240e67dd3418bc8c7298f5fa6cc3e2de0b652f0964b639ac |
|
MD5 | 3f2099ce722156d9eebe8304db320f4a |
|
BLAKE2b-256 | 708a464c81e556ed5740b950baf4c038b5d564e67839a3a84c0e9f4caf8ae590 |