Differentiable Fuzzy Logic operators for
Project description
torch-norms
t-norms in PyTorch
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
torchnorms-1.0.3.tar.gz
(5.4 kB
view details)
Built Distribution
File details
Details for the file torchnorms-1.0.3.tar.gz
.
File metadata
- Download URL: torchnorms-1.0.3.tar.gz
- Upload date:
- Size: 5.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.8.3 pkginfo/1.8.2 requests/2.13.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 925079a7539e00f1d44b2bc80a3e4094184b3222e3c8c787bd53ce6b4fc5a965 |
|
MD5 | e515557438311705002450a19ba7aac8 |
|
BLAKE2b-256 | 2fc3042e47449c202fb62b387059dce7a6e456673415bc3c3c536ba21f782cb4 |
File details
Details for the file torchnorms-1.0.3-py3-none-any.whl
.
File metadata
- Download URL: torchnorms-1.0.3-py3-none-any.whl
- Upload date:
- Size: 13.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.8.3 pkginfo/1.8.2 requests/2.13.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 59c091f24aa6fc948e7ddd15453a5a3561ba0d95094c4ef537b110e9e27b354d |
|
MD5 | 768f4b91880a0b1018d1d412959f9629 |
|
BLAKE2b-256 | e3ed3042d90fec54ae7c15dcd2756b09c23875bf5cb15158451e18b16375aca6 |