Skip to main content

Differentiable Fuzzy Logic operators for

Project description

torch-norms

t-norms in PyTorch

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchnorms-1.1.0.tar.gz (5.5 kB view details)

Uploaded Source

Built Distribution

torchnorms-1.1.0-py3-none-any.whl (14.7 kB view details)

Uploaded Python 3

File details

Details for the file torchnorms-1.1.0.tar.gz.

File metadata

  • Download URL: torchnorms-1.1.0.tar.gz
  • Upload date:
  • Size: 5.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.3 pkginfo/1.8.2 requests/2.13.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.9

File hashes

Hashes for torchnorms-1.1.0.tar.gz
Algorithm Hash digest
SHA256 69efb3aef0ff7700eda4db865ffd80daeb18260deaf1396fefde1c06f6e7ac6f
MD5 d32d8cc38064d70055b34c24a3c8526a
BLAKE2b-256 750cb1b49f4b0e30b2d2ccd30634a19240c0af95dda97282448752973326f696

See more details on using hashes here.

File details

Details for the file torchnorms-1.1.0-py3-none-any.whl.

File metadata

  • Download URL: torchnorms-1.1.0-py3-none-any.whl
  • Upload date:
  • Size: 14.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.3 pkginfo/1.8.2 requests/2.13.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.9

File hashes

Hashes for torchnorms-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 3bff64cab12b127404b0cc408f4e011790c0cf8047f6f3e156d48979b9405876
MD5 91c0f6bebafe307136ec34c87d48d69e
BLAKE2b-256 c9dc9bbe018407dec476bb9d2eeb76099196bb3b4bda30846ec60bf98ddf5954

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page