Differentiable Fuzzy Logic operators for
Project description
torch-norms
t-norms in PyTorch
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
torchnorms-1.1.2.tar.gz
(5.7 kB
view details)
Built Distribution
File details
Details for the file torchnorms-1.1.2.tar.gz
.
File metadata
- Download URL: torchnorms-1.1.2.tar.gz
- Upload date:
- Size: 5.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.8.3 pkginfo/1.8.2 requests/2.13.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a003dea06f5f17095040ac7c11629122ddddd50dcd183b88f18c09a87b9eeada |
|
MD5 | c92c8b916f4693c041f9bb6220133ac9 |
|
BLAKE2b-256 | edae6239538b2c2d8a7be7a740ca77cff8e34ba55e56ca391c1e871155d4b387 |
File details
Details for the file torchnorms-1.1.2-py3-none-any.whl
.
File metadata
- Download URL: torchnorms-1.1.2-py3-none-any.whl
- Upload date:
- Size: 15.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.8.3 pkginfo/1.8.2 requests/2.13.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 43f32ab39fbceb1bfe8e6dec630e4102f677a3e444b3fcbd30b327fc2f059a9a |
|
MD5 | c826cc67a891ecdd2b06c9a681de2911 |
|
BLAKE2b-256 | e9ec4d5c9cf8d34a1ca64f26741cfd87b44f11c380169219742fac3e6ac6d1bc |