Differentiable Fuzzy Logic operators for
Project description
torch-norms
t-norms in PyTorch
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
torchnorms-1.2.1.tar.gz
(6.0 kB
view details)
Built Distribution
File details
Details for the file torchnorms-1.2.1.tar.gz
.
File metadata
- Download URL: torchnorms-1.2.1.tar.gz
- Upload date:
- Size: 6.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.8.3 pkginfo/1.8.2 requests/2.13.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 940e2edde6e85c08d32c11a8a2546fc16fa35862a4b581267b3b8b4ae38120cc |
|
MD5 | 237bc582681002988935f7b4ae255c45 |
|
BLAKE2b-256 | 8dca4579b3b61ae0d8e3a63d23553095ca06567534b28baa0fa6f9dffda568d1 |
File details
Details for the file torchnorms-1.2.1-py3-none-any.whl
.
File metadata
- Download URL: torchnorms-1.2.1-py3-none-any.whl
- Upload date:
- Size: 15.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.8.3 pkginfo/1.8.2 requests/2.13.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a3a53bab745e00150a94b08d7c51f9d8e8dba20a36a381b326821105bb2871e1 |
|
MD5 | e18f9c9ea54ce84b48820ea5a75941ce |
|
BLAKE2b-256 | 19abab3247fa890b88731aa667fd6fe1e674e8d516385aa3bbfdc45490ff7841 |