Skip to main content

Differentiable Fuzzy Logic operators for

Project description

torch-norms

t-norms in PyTorch

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchnorms-1.3.1.tar.gz (6.4 kB view details)

Uploaded Source

Built Distribution

torchnorms-1.3.1-py3-none-any.whl (16.7 kB view details)

Uploaded Python 3

File details

Details for the file torchnorms-1.3.1.tar.gz.

File metadata

  • Download URL: torchnorms-1.3.1.tar.gz
  • Upload date:
  • Size: 6.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.3 pkginfo/1.8.2 requests/2.13.0 requests-toolbelt/0.9.1 tqdm/4.23.3 CPython/3.6.9

File hashes

Hashes for torchnorms-1.3.1.tar.gz
Algorithm Hash digest
SHA256 0835f297b349ece43dc2df58a065f342fc41544f6857210972cf4937c7bc927a
MD5 27be78472f8848e0d6e381599dbe5740
BLAKE2b-256 e7a6320cb9057c74abbc5240462bd3a41a7132fe9ae4711337c0e3eb77b3e045

See more details on using hashes here.

File details

Details for the file torchnorms-1.3.1-py3-none-any.whl.

File metadata

  • Download URL: torchnorms-1.3.1-py3-none-any.whl
  • Upload date:
  • Size: 16.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.3 pkginfo/1.8.2 requests/2.13.0 requests-toolbelt/0.9.1 tqdm/4.23.3 CPython/3.6.9

File hashes

Hashes for torchnorms-1.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 682fda41a6f9d7328eada40685bf1ea7bb20995fc66e197229cb1e69091cfcf7
MD5 3dcf6594378056432a75ac879a3f22a9
BLAKE2b-256 0b748bd4d8a3be45ccf4ab4d399e1cd3a045cb27cf992beb904378d41a9e8079

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page