Skip to main content

Differentiable Fuzzy Logic operators for

Project description

torch-norms

t-norms in PyTorch

pminervini

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchnorms-1.5.2.tar.gz (6.9 kB view details)

Uploaded Source

Built Distribution

torchnorms-1.5.2-py3-none-any.whl (18.7 kB view details)

Uploaded Python 3

File details

Details for the file torchnorms-1.5.2.tar.gz.

File metadata

  • Download URL: torchnorms-1.5.2.tar.gz
  • Upload date:
  • Size: 6.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.3 pkginfo/1.8.2 requests/2.13.0 requests-toolbelt/0.9.1 tqdm/4.63.0 CPython/3.6.9

File hashes

Hashes for torchnorms-1.5.2.tar.gz
Algorithm Hash digest
SHA256 ebfe6f3c1f088f3f69cbcaa68a5402d2ee4a59906f6ca39ea3d8ae2d7436697f
MD5 d69c7147e53ddce0c82480a34e84a2a7
BLAKE2b-256 3ebf5a90fe256fe02e16f2ae42c0c0e81cb8f302de78df40ffdc96081f8b5db2

See more details on using hashes here.

File details

Details for the file torchnorms-1.5.2-py3-none-any.whl.

File metadata

  • Download URL: torchnorms-1.5.2-py3-none-any.whl
  • Upload date:
  • Size: 18.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.3 pkginfo/1.8.2 requests/2.13.0 requests-toolbelt/0.9.1 tqdm/4.63.0 CPython/3.6.9

File hashes

Hashes for torchnorms-1.5.2-py3-none-any.whl
Algorithm Hash digest
SHA256 65413d0ebfb977c2674bbb6132ec924f2ad0cd0ea3d6027cc94281d6e638c4d4
MD5 f384b749b2ae08f7655c32e77358ca74
BLAKE2b-256 0cd4f1c694be66e88158003f4fa26551880643ce5c8335c7d465ee2e5b6c1ece

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page