Skip to main content

Collection of functions and modules to help development in PyTorch.

Project description

torchoutil

Python PyTorch Code style: black Build Documentation Status

Collection of functions and modules to help development in PyTorch.

Installation

pip install torchoutil

The only requirement is pytorch.

To check if the package is installed and show the package version, you can use the following command:

torchoutil-info

Usage

Batch of padded sequences

import torch
from torchoutil import masked_mean

x = torch.as_tensor([1, 2, 3, 4])
mask = torch.as_tensor([True, True, False, False])
result = masked_mean(x, mask)
# result contains the mean of the values marked as True: 1.5
import torch
from torchoutil import lengths_to_non_pad_mask

x = torch.as_tensor([3, 1, 2])
pad_mask = lengths_to_non_pad_mask(x, max_len=4)
# Each row i contains x[i] True values for non-padding mask
# tensor([[True, True, True, False],
#         [True, False, False, False],
#         [True, True, False, False]])

Multilabel conversions

import torch
from torchoutil import probs_to_names

probs = torch.as_tensor([[0.9, 0.1], [0.6, 0.9]])
names = probs_to_names(probs, threshold=0.5, idx_to_name={0: "Cat", 1: "Dog"})
# [["Cat"], ["Cat", "Dog"]]
import torch
from torchoutil import multihot_to_indices

multihot = torch.as_tensor([[1, 0, 0], [0, 1, 1], [0, 0, 0]])
indices = multihot_to_indices(multihot)
# [[0], [1, 2], []]

...and more tensor manipulations!

import torch
from torchoutil import insert_at_indices

x = torch.as_tensor([1, 2, 3, 4])
result = insert_at_indices(x, indices=[0, 2], values=5)
# result contains tensor with inserted values: tensor([5, 1, 2, 5, 3, 4])
import torch
from torchoutil import get_inverse_perm

perm = torch.randperm(10)
inv_perm = get_inverse_perm(perm)

x1 = torch.rand(10)
x2 = x1[perm]
x3 = x2[inv_perm]
# inv_perm are indices that allow us to get x3 from x2, i.e. x1 == x3 here

Extras

torchoutil also provides additional modules when some specific package are already installed in your environment. All extras can be installed with pip install torchoutil[extras]

If tensorboard is installed, the function load_event_file can be used. If numpy is installed, the classes FromNumpy and ToNumpy can be used and their related function. If h5py is installed, the function pack_to_hdf and class HDFDataset can be used.

Contact

Maintainer:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchoutil-0.2.1.tar.gz (41.8 kB view details)

Uploaded Source

File details

Details for the file torchoutil-0.2.1.tar.gz.

File metadata

  • Download URL: torchoutil-0.2.1.tar.gz
  • Upload date:
  • Size: 41.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.11

File hashes

Hashes for torchoutil-0.2.1.tar.gz
Algorithm Hash digest
SHA256 78ce7a37f5be2ac42cb4ebcc85a9db57f9a9885346045592f2c5d90967cff04c
MD5 f1c2cd046e6225469006933396c3cd35
BLAKE2b-256 46b5b1d16eea7cea68b6b5a2a0a3759a940b6fa386ea2120ad07c577af163b8f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page