Skip to main content

Collection of functions and modules to help development in PyTorch.

Project description

torchoutil

Python PyTorch Code style: black Build Documentation Status

Collection of functions and modules to help development in PyTorch.

Installation

pip install torchoutil

The only requirement is PyTorch.

To check if the package is installed and show the package version, you can use the following command:

torchoutil-info

Usage

Batch of padded sequences

import torch
from torchoutil import masked_mean

x = torch.as_tensor([1, 2, 3, 4])
mask = torch.as_tensor([True, True, False, False])
result = masked_mean(x, mask)
# result contains the mean of the values marked as True: 1.5
import torch
from torchoutil import lengths_to_non_pad_mask

x = torch.as_tensor([3, 1, 2])
mask = lengths_to_non_pad_mask(x, max_len=4)
# Each row i contains x[i] True values for non-padding mask
# tensor([[True, True, True, False],
#         [True, False, False, False],
#         [True, True, False, False]])

Multilabel conversions

import torch
from torchoutil import probs_to_names

probs = torch.as_tensor([[0.9, 0.1], [0.6, 0.9]])
names = probs_to_names(probs, threshold=0.5, idx_to_name={0: "Cat", 1: "Dog"})
# [["Cat"], ["Cat", "Dog"]]
import torch
from torchoutil import multihot_to_indices

multihot = torch.as_tensor([[1, 0, 0], [0, 1, 1], [0, 0, 0]])
indices = multihot_to_indices(multihot)
# [[0], [1, 2], []]

...and more tensor manipulations!

import torch
from torchoutil import insert_at_indices

x = torch.as_tensor([1, 2, 3, 4])
result = insert_at_indices(x, indices=[0, 2], values=5)
# result contains tensor with inserted values: tensor([5, 1, 2, 5, 3, 4])
import torch
from torchoutil import get_inverse_perm

perm = torch.randperm(10)
inv_perm = get_inverse_perm(perm)

x1 = torch.rand(10)
x2 = x1[perm]
x3 = x2[inv_perm]
# inv_perm are indices that allow us to get x3 from x2, i.e. x1 == x3 here

Extras

torchoutil also provides additional modules when some specific package are already installed in your environment. All extras can be installed with pip install torchoutil[extras]

  • If tensorboard is installed, the function load_event_file can be used. It is useful to load manually all data contained in an tensorboard event file.
  • If numpy is installed, the classes FromNumpy and ToNumpy can be used and their related function. It is meant to be used to compose dynamic transforms into Sequential module.
  • If h5py is installed, the function pack_to_hdf and class HDFDataset can be used. Can be used to pack/read dataset to HDF files, and supports variable-length sequences of data.

Contact

Maintainer:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchoutil-0.3.0.tar.gz (46.5 kB view details)

Uploaded Source

File details

Details for the file torchoutil-0.3.0.tar.gz.

File metadata

  • Download URL: torchoutil-0.3.0.tar.gz
  • Upload date:
  • Size: 46.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.11

File hashes

Hashes for torchoutil-0.3.0.tar.gz
Algorithm Hash digest
SHA256 d4465f759d6d5c797089dc33589312008742ccbd79453c2138adfcf347160636
MD5 1930c2847a0e75b5ef3423f2363a708e
BLAKE2b-256 ca10c8a3a5acc0ea0321926a34d3e1e92a900fdda04cb80ab74bb8f912cc608d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page