Skip to main content

Simple ETL Pipeline for PyTorch

Project description

Torchpipe: Simple ETL Pipeline for PyTorch

Torchpipe is a simple ETL framework, especially for PyTorch. It is an alternative to in TensorFlow


  • Python 3.6+
  • PyTorch 1.2+


To install Torchpipe:

pip install torchpipe

Basic Usage

import torchpipe as tp

d = tp.Dataset(range(1_000))
d.shuffle(buffer_size=100).batch(batch_size=10).first() # [4, 44, 71, 92, 97, 86, 43, 57, 60, 62]

Usage with PyTorch

from import DataLoader
import torchpipe as tp

d = tp.Dataset(range(1_000)).shuffle(100).batch(10)
loader = DataLoader(d, num_workers=4, collate_fn=lambda x: x)
for x in loader:

Usage with LineFlow

You can use Torchpipe with pre-defined datasets in LineFlow:

from import DataLoader
from lineflow.datasets.wikitext import cached_get_wikitext
import torchpipe as tp

dataset = cached_get_wikitext('wikitext-2')
# Preprocessing dataset
train_data = tp.Dataset(dataset['train']) \
    .flat_map(lambda x: x.split() + ['<eos>']) \
    .window(35) \
    .parallel() \
    .shuffle(64 * 100) \

# Iterating dataset
loader = DataLoader(train_data, num_workers=4, collate_fn=lambda x: x)
for x in loader:

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for torchpipe, version 0.1.0
Filename, size File type Python version Upload date Hashes
Filename, size torchpipe-0.1.0.tar.gz (14.6 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page