Measure neural network device specific metrics (latency, flops, etc.)
Project description
torchprof
Measure neural network device specific metrics.
Each nested module is run individually.
Quickstart
pip install torchprof
import torch
import torchvision
import torchprof
model = torchvision.models.alexnet(pretrained=False).cuda()
x = torch.rand([1, 3, 224, 224]).cuda()
observer = torchprof.LatencyObserver(model, use_cuda=True)
raw_measurements = observer.measure_latency(x)
print(raw_measurements[:3])
# [(['AlexNet'], (3836.7989999999986, 13197.66349029541)), (['AlexNet', 'features'], (3527.07, 14528.191928863525)), (['AlexNet', 'features', '0'], (223.438, 1080.1919765472412))]
print(observer)
Module | CPU Time | CUDA Time
---------------|-----------|----------
AlexNet | 3.837ms | 13.198ms
├── features | 3.527ms | 14.528ms
│ ├── 0 | 223.438us | 1.080ms
│ ├── 1 | 18.270us | 20.448us
│ ├── 2 | 29.030us | 52.224us
│ ├── 3 | 76.570us | 1.108ms
│ ├── 4 | 17.480us | 17.600us
│ ├── 5 | 28.150us | 51.008us
│ ├── 6 | 83.519us | 475.840us
│ ├── 7 | 17.820us | 18.432us
│ ├── 8 | 83.370us | 541.664us
│ ├── 9 | 17.590us | 18.432us
│ ├── 10 | 82.769us | 425.920us
│ ├── 11 | 17.260us | 18.272us
│ └── 12 | 28.160us | 49.280us
├── avgpool | 28.130us | 54.272us
└── classifier | 187.109us | 716.000us
├── 0 | 29.179us | 52.992us
├── 1 | 37.800us | 419.904us
├── 2 | 17.319us | 17.536us
├── 3 | 28.860us | 52.096us
├── 4 | 37.629us | 202.752us
├── 5 | 17.270us | 17.408us
└── 6 | 37.520us | 75.648us
LICENSE
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
torchprof-0.0.1.tar.gz
(3.9 kB
view details)
Built Distribution
File details
Details for the file torchprof-0.0.1.tar.gz
.
File metadata
- Download URL: torchprof-0.0.1.tar.gz
- Upload date:
- Size: 3.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c95acb68ffcd5ad2ebd636ed52dca853b828e83091c616805d41b1c5f2b8d7a6 |
|
MD5 | a4a4cbe385c4bd24d51c7cba2205bb3f |
|
BLAKE2b-256 | 1e375bb675dbf72b91f9882b85051fc2370f8047b2e79e4f0f2994c1d3390d4b |
File details
Details for the file torchprof-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: torchprof-0.0.1-py3-none-any.whl
- Upload date:
- Size: 5.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1e316a0812a873058cf60c1a9f1d506023adf75c9776982e84caea0b20276f9f |
|
MD5 | a483f050401f5d29e74e7b8a9bb1b6fa |
|
BLAKE2b-256 | e11a149dfb97b8fbae3c1df4e493b52c68e9a052e7cde4d5d579bef6e965b053 |