Measure neural network device specific metrics (latency, flops, etc.)
Project description
torchprof
A minimal dependency library for layer-by-layer profiling of Pytorch models.
All metrics are derived using the PyTorch autograd profiler.
Quickstart
pip install torchprof
import torch
import torchvision
import torchprof
model = torchvision.models.alexnet(pretrained=False).cuda()
x = torch.rand([1, 3, 224, 224]).cuda()
with torchprof.Profile(model, use_cuda=True) as prof:
model(x)
print(prof.display(show_events=False)) # equivalent to `print(prof)` and `print(prof.display())`
Module | Self CPU total | CPU total | CUDA total
---------------|----------------|-----------|-----------
AlexNet | | |
├── features | | |
│├── 0 | 1.956ms | 7.714ms | 7.787ms
│├── 1 | 68.880us | 68.880us | 69.632us
│├── 2 | 85.639us | 155.948us | 155.648us
│├── 3 | 253.419us | 970.386us | 1.747ms
│├── 4 | 18.919us | 18.919us | 19.584us
│├── 5 | 30.910us | 54.900us | 55.296us
│├── 6 | 132.839us | 492.367us | 652.192us
│├── 7 | 17.990us | 17.990us | 18.432us
│├── 8 | 87.219us | 310.776us | 552.544us
│├── 9 | 17.620us | 17.620us | 17.536us
│├── 10 | 85.690us | 303.120us | 437.248us
│├── 11 | 17.910us | 17.910us | 18.400us
│└── 12 | 29.239us | 51.488us | 52.288us
├── avgpool | 49.230us | 85.740us | 88.960us
└── classifier | | |
├── 0 | 626.236us | 1.239ms | 1.362ms
├── 1 | 235.669us | 235.669us | 635.008us
├── 2 | 17.990us | 17.990us | 18.432us
├── 3 | 31.890us | 56.770us | 57.344us
├── 4 | 39.280us | 39.280us | 212.128us
├── 5 | 16.800us | 16.800us | 17.600us
└── 6 | 38.459us | 38.459us | 79.872us
To see the low level operations that occur within each layer, print the contents of prof.display(show_events=True)
.
Module | Self CPU total | CPU total | CUDA total
------------------------------|----------------|-----------|-----------
AlexNet | | |
├── features | | |
│├── 0 | | |
││├── conv2d | 15.740us | 1.956ms | 1.972ms
││├── convolution | 12.000us | 1.940ms | 1.957ms
││├── _convolution | 36.590us | 1.928ms | 1.946ms
││├── contiguous | 6.600us | 6.600us | 6.464us
││└── cudnn_convolution | 1.885ms | 1.885ms | 1.906ms
│├── 1 | | |
││└── relu_ | 68.880us | 68.880us | 69.632us
│├── 2 | | |
││├── max_pool2d | 15.330us | 85.639us | 84.992us
││└── max_pool2d_with_indices | 70.309us | 70.309us | 70.656us
│├── 3 | | |
...
The original Pytorch EventList can be returned by calling raw()
on the profile instance.
trace, event_lists_dict = prof.raw()
print(trace[2])
# Trace(path=('AlexNet', 'features', '0'), leaf=True, module=Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2)))
print(event_lists_dict[trace[2].path][0])
--------------------- --------------- --------------- --------------- --------------- --------------- --------------- --------------- --------------- ---------------
Name Self CPU total % Self CPU total CPU total % CPU total CPU time avg CUDA total % CUDA total CUDA time avg Number of Calls
--------------------- --------------- --------------- --------------- --------------- --------------- --------------- --------------- --------------- ---------------
conv2d 0.80% 15.740us 100.00% 1.956ms 1.956ms 25.32% 1.972ms 1.972ms 1
convolution 0.61% 12.000us 99.20% 1.940ms 1.940ms 25.14% 1.957ms 1.957ms 1
_convolution 1.87% 36.590us 98.58% 1.928ms 1.928ms 24.99% 1.946ms 1.946ms 1
contiguous 0.34% 6.600us 0.34% 6.600us 6.600us 0.08% 6.464us 6.464us 1
cudnn_convolution 96.37% 1.885ms 96.37% 1.885ms 1.885ms 24.47% 1.906ms 1.906ms 1
--------------------- --------------- --------------- --------------- --------------- --------------- --------------- --------------- --------------- ---------------
Self CPU time total: 1.956ms
CUDA time total: 7.787ms
Layers can be selected for individually using the optional paths
kwarg. Profiling is ignored for all other layers.
model = torchvision.models.alexnet(pretrained=False)
x = torch.rand([1, 3, 224, 224])
# Layer does not have to be a leaf layer
paths = [("AlexNet", "features", "3"), ("AlexNet", "classifier")]
with torchprof.Profile(model, paths=paths) as prof:
model(x)
print(prof)
Module | Self CPU total | CPU total | CUDA total
---------------|----------------|-----------|-----------
AlexNet | | |
├── features | | |
│├── 0 | | |
│├── 1 | | |
│├── 2 | | |
│├── 3 | 2.846ms | 11.368ms | 0.000us
│├── 4 | | |
│├── 5 | | |
│├── 6 | | |
│├── 7 | | |
│├── 8 | | |
│├── 9 | | |
│├── 10 | | |
│├── 11 | | |
│└── 12 | | |
├── avgpool | | |
└── classifier | 12.016ms | 12.206ms | 0.000us
├── 0 | | |
├── 1 | | |
├── 2 | | |
├── 3 | | |
├── 4 | | |
├── 5 | | |
└── 6 | | |
LICENSE
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file torchprof-0.3.1.tar.gz
.
File metadata
- Download URL: torchprof-0.3.1.tar.gz
- Upload date:
- Size: 9.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2d57180cbc8fcc9afc9fed46fc315b705f377d4f4c82c2f4d87d13b153430ab2 |
|
MD5 | d85a909bd8a408d0fa7eb97345fc6d48 |
|
BLAKE2b-256 | 108356f60686cf0177d9c99cf472e7225d3d757a204d4a45dfdbdacbf6881d9c |
File details
Details for the file torchprof-0.3.1-py3-none-any.whl
.
File metadata
- Download URL: torchprof-0.3.1-py3-none-any.whl
- Upload date:
- Size: 10.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 68a1695318d2520d78562a158db75762089413c7906a6fa7ac784d1f96c0c531 |
|
MD5 | c926899d47b5aaea660a98d85b660fd8 |
|
BLAKE2b-256 | 476ca4faf0401ef2c06c9d98fa60987528079902e66a4dfb06d8262fb1a1dadf |